Q1. Problem 13 page 122 from the textbook

Q2. Show that S is a subspace of \mathbb{R}^3 where $S = \{(a, b, c)^T \mid a + b + c = 0\}$

Q3. Let $\mathbb{R}^{2\times 2}$ be the vector space of all 2×2 matrices with real entries. Let W be the subset of $\mathbb{R}^{2\times 2}$ that consists of all matrices with zero determinant. Determine whether W form a subspace of $\mathbb{R}^{2\times 2}$.

Q4. Let V be the vector space of all functions from \mathbb{R} into \mathbb{R} . Show that W is a subspace of V where W consists of the odd functions, i.e. those functions f for which f(-x) = -f(x).

Q5. Problem 8 page 131 from the textbook