King Fahd University of Petroleum & Minerals Department of Mathematics and Statistics MATH 280-01(Term 142) **Final Exam** May 19, 2015

NAME:

ID #:

SHOW ALL WORK FOR FULL CREDIT

Question	Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
9	10	
10	10	
11	10	
12	10	
Total	120	

Q1. Let A and B be two $n \times n$ matrices. Let $\lambda \neq 0$ be an eigenvalue of **AB**. Show that λ is also an eigenvalue of **BA**

Q2. Let A be a nonsingular matrix and let λ be an eigenvalue of A. Show that $\frac{1}{\lambda}$ is an eigenvalue of A^{-1}

Q3. Let A be an $n \times n$ matrix. Show that A and A^T have the same characteristic polynomial and hence the same eigenvalues.

- Q4. Let B be a nonsingular matrix and let $M = B^T B$:
 - (i) Show that M is symmetric.
 - (ii) Show that M is positive definite.

Q5. Let A be a symmetric positive definite matrix. Show that all the diagonal elements of A are positive.

Q6. (a) State the definition of an **orthogonal matrix**.

(b) If A and B are orthogonal matrices show that AB is also orthogonal.

(c) Show that the determinant of an orthogonal matrix is either 1 or -1.

Q7. (a) Verify that the following is an inner product on \mathbb{R}^2 :

$$\langle u, v \rangle = x_1 y_1 - 2x_1 y_2 - 2x_2 y_1 + 5x_2 y_2$$

where

$$u = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \ v = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$$

(b) Consider the vectors

$$u = \begin{bmatrix} 1 \\ 5 \end{bmatrix}, v = \begin{bmatrix} 3 \\ 4 \end{bmatrix}.$$

Find $\parallel u \parallel$, $\parallel v \parallel$, and the angle θ between u and v.

Q8. Let

$$A = \begin{bmatrix} 3 & 1 & 1 \\ 2 & 4 & 2 \\ 1 & 1 & 3 \end{bmatrix}.$$

Factor A into a product XDX^{-1} , where D is diagonal.

Q9. Let V be the vector space of all 2×2 matrices over \mathbb{R} . Let W consists of all matrices A for which $A^2 = A$. Show that W is not a subspace of V.

Q10. Let Y = Span(u) be a subspace of \mathbb{R}^3 , where $u = (1, -1, 1)^T$. Find a basis for the orthogonal complement of Y.

Q11. Let L be the linear operator on \mathbb{R}^3 defined by

$$L(X) = \begin{bmatrix} x_1 + 2x_2 - x_3 \\ x_2 + x_3 \\ x_1 + x_2 - 2x_3 \end{bmatrix}$$

- (a) Find the standard matrix representation of L.
- (b) Find the kernal of L.

Q12. Given the basis

$$\left\{ \begin{bmatrix} 1\\2\\-2 \end{bmatrix}, \begin{bmatrix} 4\\3\\2 \end{bmatrix}, \begin{bmatrix} 1\\2\\1 \end{bmatrix} \right\}$$

for \mathbb{R}^3 , use the Gram-Schmidt process to obtain an orthonormal basis.