KFUPM, DEPARTMENT OF MATHEMATICS AND STATISTICS

MATH 232: FINAL, SEMESTER (142), MAY 19, 2015

12:30–15:30 pm

Name :

ID :

Exercise	Points
1	: 10
2	: 10
3	: 14
4	: 10
5	: 8
6	: 10
7	: 14
8	: 14
9	: 14
10	: 14
11	: 14
12	: 8
Total	: 140

Exercise 1 (10 pts). Give a propositional form of the following argument, and show that it is valid:

If we choose nuclear power, then we increase the risk of a nuclear accident.

If we choose conventional power, then we add to the greenhouse effect.

We choose either nuclear power or conventional power.

Therefore, we either increase the risk of a nuclear accident or add to the greenhouse effect.

Exercise 2 (10 pts). Describe all the partitions of the set $A = \{a, b, c, d\}$.

Exercise 3 (14 pts). Let $a, b \in \mathbb{C}$. Using mathematical induction, show that for all $n \in \mathbb{N}$,

$$(a+b)^n = \sum_{k=0}^n \left(\begin{array}{c}n\\k\end{array}\right) a^{n-k} b^k.$$

Use the previous formula to evaluate the following sums:

(i)
$$\sum_{k=0}^{n} {n \choose k} 2^{2k}$$

(ii) $\sum_{k=1}^{2n} {2n \choose k} (-1)^{k} 3^{2k-1}$
(iii) $\sum_{k=0}^{n} {n \choose k} \cos(k\frac{\pi}{2})$

Exercise 4 (10 pts). Find all integers x, y such that

26x + 7y = 2.

Exercise 5 (8 pts). Give the prime factorizations of x = 67500 and y = 3150, then evaluate d = gcd(x, y). Find a particular couple $(u, v) \in \mathbb{Z}^2$ such that ux + vy = d.

9

Exercise 6 (10 pts). Let p be a prime number. Show that there is no $a, b \in \mathbb{Z}$ such that

$$a^2 - p^2 b = p.$$

Exercise 7 (14 pts). Let p, q be distinct prime numbers.

(i) Show that $x = \sqrt{p}$ and $y = \log_p(q^2)$ are irrational numbers. (ii) What about x^y .

(Recall that, for a > 0, $\beta = \log_a(\alpha)$ is equivalent to $a^{\beta} = \alpha$)

Exercise 8 (14 pts). Prove that the function $f : \mathbb{R} \setminus \{2\} \longrightarrow \mathbb{R} \setminus \{4\}$ defined by $f(x) = \frac{4x+1}{x-2}$ is bijective. Find its inverse function f^{-1} .

Exercise 9 (14 pts). Show that the function $f : \mathbb{N} \longrightarrow \mathbb{Z}$ defined by $f(n) = \frac{(-1)^n(2n-1)+1}{4}$ is a bijection.

Exercise 10 (14 pts). Let a < b in \mathbb{R} . Show that |(a, b)| = |[a, b]|.

Exercise 11 (14 pts). For a positive integer n, we denote by

 $U(n) := \{ \overline{i} \in \mathbb{Z}_n : i \text{ has an inverse modulo } n \}$

List all the elements of U(10) and give the table of multiplication on U(10).

Exercise 12 (8 pts). Show that for $n \ge 3$, (S_n, \circ) is not commutative.

19

_