KFUPM, DEPARTMENT OF MATHEMATICS AND STATISTICS

MATH 232: EXAM II, SEMESTER (142), MAY 05, 2015

8:00–10:00 pm

Name :

ID :

Exercise	Points
1	: 8
2	: 8
3	: 8
4	: 8
5	: 8
6	: 14
7	: 14
8	: 12
Total	: 80

Exercise 1 (8 pts). Describe all the equivalence relations on the set $A = \{a, b, c\}$.

Exercise 2 (8 pts). Define a relation R on \mathbb{Z} as xRy if and only if 3x - 5y is even. Show that R is an equivalence relation. Describe its equivalence classes. **Exercise 3** (8 pts). Write the addition and multiplication tables for \mathbb{Z}_6 .

Exercise 4 (8 pts). Suppose $[a], [b] \in \mathbb{Z}_n$, and [a] = [a'] and [b] = [b']. Mohammed adds [a] and [b] as [a]+[b] = [a+b], he also writes the multiplication as $[a] \times [b] = [ab]$. Ali adds them as [a']+[b'] = [a'+b']; for the multiplication he writes $[a'] \times [b'] = [a'b']$. Show that their answers [a+b] and [a'+b'] are the same, and the answers [ab] and [a'b'] are the same.

Exercise 5 (8 pts).

- (i) Consider the set $f = \{(x, y) \in \mathbb{Z} : x + 7y = 11\}$. Is this a function from \mathbb{Z} to \mathbb{Z} ? Explain.
- (*ii*) Consider the set $f = \{(x^2, x) : x \in \mathbb{Z}\}$. Is this a function from \mathbb{Z} to \mathbb{Z} ? Explain.

Exercise 6 (14 pts). Consider the function $h : \mathbb{Z} \times \mathbb{Z} \longrightarrow \mathbb{Q}$ defined by $h(m, n) = \frac{m}{|n|+1}$. Determine whether this is injective and whether it is surjective.

Exercise 7 (14 pts). Prove that the function $f : \mathbb{R} \setminus \{2\} \longrightarrow \mathbb{R} \setminus \{5\}$ defined by $f(x) = \frac{5x+1}{x-2}$ is bijective. Find its inverse function f^{-1} .

Exercise 8 (12 pts). Let $f : A \longrightarrow B$ be a function. Recall that if D is a subset of B and C is a subset of A, then

$$f(C) = \{f(x) : x \in C\}$$
 and $f^{-1}(D) = \{x \in A : f(x) \in D\}.$

Show that that f is injective if and only if $C = f^{-1}(f(C))$, for every $C \subseteq A$.

11
