KFUPM - Department of Mathematics and Statistics - Term 142 **MATH 102 QUIZ #1 Code 1** (Duration = 15 minutes)

NAME:______ID:_____Section: _____

Exercise 1 (5 points)

Let f be an <u>odd</u> continuous function with f(1) = 1. If $F(x) = \int_{-x}^{x} tf(t) dt$, then F'(1) is equal to:

a/1	
b/2	
c/-1	
d/-2	
e/ 0	

Exercise 2 ((5 points)				
The value of	f the defini	te integral $\int_{-\frac{1}{2}}^{0}$	$\frac{\sin x}{1 + \cos x} dx$	x is:	
a/ ln 2					
$b/-\ln 2$					
c/ $\frac{\pi}{4}$					
$d/-\frac{\pi}{4}$					
e/ 0					

KFUPM – Department of Mathematics and Statistics – Term 142 MATH 102 QUIZ # 1 Code 2 (Duration = 15 minutes)

NAME:___

_____ ID:_____ Section: _____

Exercise 1 (5 points) The value of the definite integral $\int_{0}^{\frac{\pi}{2}} \frac{\cos x}{1 + \sin x} dx$ is:

a/ ln 2	
b/ ln 4	
c/ln3	
$d/\frac{1}{2}$	
$e/\frac{3}{2}$	

Exercise 2 (5 points)

Let f be an <u>odd</u> continuous function with f(2) = 1. If $F(x) = \int_{-x}^{x} tf(t) dt$, then F'(2) is equal to:

a/ 4	
b/2	
c/-4	
d/-2	
e/ 0	