Name:	ID:		<u>Sec</u> : 10
MATH-102	Term-142	CQ-5	
(circle one letter an	nd show all y	your work)	
1)The volume of the solid generated by revolving			
the region bounded by the curves $y = 2x$, $y = x^2$			
about the line $y = -1$ is			
(a) $\int_0^2 \pi (4x^2 - x^4) dx$			
(b) $\int_0^1 \pi (4x^2 - x^4) dx$			
(c) $\int_0^2 2\pi ((2x+1)x^2) dx$			
(d) $\int_0^1 \pi (2x+1)^2 - (x^2+1)^2) dx$			
(e) $\int_0^2 \pi (2x+1)^2 - (x^2+1)^2) dx$			

(f) None of the above

2)The volume of the solid generated by revolving the region bounded by the curves $y = 2\sqrt{x}$ and the lines y = 2, and x = 0 about the *x*-axis is

- (a) $2\pi/5$
- (b) $7\pi/5$
- (c) π
- (d) 2π
- (e) π/5
- (f) None of the above

3)The volume of the solid generated by revolving the region bounded by the curves $y = e^{x-1}$, y = 0, x=1 and x = 3 about the x-axis is

- (a) $\pi(e^4+2)/2$
- (b) $\pi(e^4-1)/2$
- (c) $\pi (e^2 2)/2$
- (d) $\pi(e^4-3)/2$
- (e) $\pi(e^6 e^2)$
- (f) None of the above

4)The base of a solid is a triangular region bounded by the lines y=x, y=1, and x=0. If the crosssections of the solid perpendicular to the y-axis are semi-circles with diameters running across the base of the solid, then the volume of the solid is (a) $\pi/36$

- (b) $3\pi/8$
- (c) $\pi/16$
- (d) $\pi/24$
- (e) $\pi/4$
- (f) None of the above

5)The region in the first quadrant enclosed by the parabolas $y = 2-x^2$, $y = x^2$ and the y-axis is rotating about the line x = -1, then the volume of the solid generated is given by

(a) $\int_0^1 4\pi (1+x-x^2-x^3) dx$

(b)
$$\int_0^2 2\pi (1+x-x^2-x^3) dx$$

(c)
$$\int_0^1 4\pi (1 - 2x - 2x^2 + x^3) dx$$

(d)
$$\int_0^2 2\pi (1-x-x^2-x^3) dx$$

(e)
$$\int_0^1 2\pi (4 - x^2 + 2x^4) dx$$

(f) None of the above