Math 101 Quiz # 6(a) Time: 20 minutes Date: 12-5-2015

Name	ID#	Sr#	Sec. 13	Marks:

Q1. Find the following limits.

(i) $\lim_{x\to 0} \frac{x(1-\cos x)}{x-\sin x}$	(ii) $\lim_{x\to 0} (e^x + x)^{\frac{1}{x}}$	

Q 2. Use Newton's method to find the positive fourth root of 2 by solving the equation $x^4 = 2$. Start with $x_0 = 1$ and find $x_1 - x_2$.

Math 101	Quiz # 6(b)	Time: 20 minutes	Date: 12-5-2015
Name	ID#	Sr # Sec. 13	Marks:

Q1. Find the following limits

(i) $\lim_{x\to\infty} \frac{\ln(x+1)}{\log_2 x}$	(ii) $\lim_{x\to 0^+} (1+x)^{\frac{1}{x}}$

Q 2. Newton's method is used to estimate the x-coordinate of the point where the curve of $y = x^3 + 2x$ crosses the horizontal line y = 2. Start with $x_0 = 1$ and calculate x_1 .

Math 101 Quiz # 6(c) Time: 20 minutes Date: 12-5-2015

Name	ID#	Sr#	Sec. 12	Marks:

Q1. Find

(i) $\lim_{\theta \to 0} \frac{(1/2)^{\theta} - 1}{\theta}$	(ii) $\lim_{x\to\infty} x^{1/x}$

Q 2. Newton's method is used to estimate the x-coordinate of the point of intersection of the curves $y = \sin\left(x + \frac{\pi}{2}\right)$ and $y = \ln(2x + 1)$. Start with $x_0 = 0$ and calculate x_1 .

Math 101 Quiz # 6(d) Time: 20 minutes Date: 12-5-2015

Name	ID#	Sr#	Sec. 12	Marks:

Q1. Find the following limits

(i) $\lim_{\theta \to 0} \frac{(1/5)^{\theta} - 1}{5\theta}$	(ii) $\lim_{x\to 0^+} (1+\sin 4x)^{\cot x}$

Q 2. Newton's method is used to estimate the x-coordinate of the point where the curve of $y = x^3 - x$ crosses the horizontal line y = 1. Start with $x_0 = 1$ and calculate x_1 .