King Fahd	University	of Petroleum	and Minerals

Math 101	Quiz # 2(a)	Time: 20 minut	es Date	: 26-2-2015
Name	ID #	Sr #	Sec. 13	Marks:

Q1. Use Intermediate Value Theorem to prove that the equation $\cos x = x$ has a solution.

Q 2. Compute $\lim_{x\to\infty} (\sqrt{x^2 + \pi} - x)$.

Math 101 Q	uiz # 2(b) Ti	me: 20 minu	ites Date:	26-2-2015
Name	ID #	Sr #	Sec. 13	Marks:

Q1. Use Intermediate Value Theorem to prove that the equation $x^4 + x - 3 = 0$ has a solution.

Q2. Find the horizontal asymptotes of the graph of the function $f(x) = \frac{\sqrt{2x^2+1}}{3x-5}$.

Math 101 Qu	$\operatorname{hiz} \# 2(\mathbf{c}) \qquad \operatorname{Tim}$	ne: 20 minu	tes Date:	26-2-2015
Name	ID #	Sr #	Sec. 12	Marks:

Q1. Use Intermediate Value Theorem to prove that the equation $\sqrt[3]{x} = 1 - x$ has a root.

Q2. Find the vertical asymptotes of the graph of the function $f(x) = \frac{\sqrt{2x^2+1}}{3x-5}$.

King Fahd	University	of Petroleum	and Minerals

Math 101 Qu	uiz # 2(d) Ti	me: 20 minu	ites Date:	26-2-2015
Name	ID #	Sr #	Sec. 12	Marks:

Q1. Use Intermediate Value Theorem to prove that the equation $x^2 - \cos \pi x = 4$ has a root.

Q 2. Compute $\lim_{x\to\infty} (\sqrt{x^2 + e} - x)$.