Math 101	Quiz # 1(a)	Time: 25 minutes	Date:17-02-2015		
Name	ID#	Sr#	Sec#	Marks:	/8

Q1. Find the following limits (i) $\lim_{x\to -3} \frac{2-\sqrt{x^2-5}}{x+3}$ (ii) $\lim_{x\to 0} \sqrt[3]{x} \cos\left(\frac{1}{x}\right)$

Q 2. Using $(\varepsilon - \delta)$ definition, show that $\lim_{x \to 6} \sqrt{10 - x} = 2$.

Math 101	Quiz # 1(b)	Time: 25 minutes	Date:	17-02-2015	
Name	ID#	Sr #	Sec#	Marks:	/8

Q1. Find the following limits: $\lim_{t\to 0} \frac{\sqrt{t^2+100}-10}{t^2}$ (ii) $\lim_{x\to 0} \tan x \sin\left(\frac{1}{x}\right)$

2. Using $(\varepsilon - \delta)$ definition, to show that $\lim_{x \to 3} (3x - 7) = 2$.

Math 101	Quiz # 1(c)	Time: 25 minutes	Date:17-02-2015	
Name	ID#	Sr # Sec#	Marks: /8	

Q1. Find the following limits: (i) $\lim_{x\to 0} \frac{\frac{1}{x-1} + \frac{1}{x+1}}{x}$ (ii) $\lim_{x\to 0} \tan x \cos\left(\frac{1}{x}\right)$

Q 2. Using $(\varepsilon - \delta)$ definition, show that $\lim_{x\to 9} \sqrt{x-5} = 2$

Math 101	Quiz # 1(d)	Time: 25 minutes	Date:17-02-2015
Name	ID#	Sr # Sec#	Marks: /8

Q1. Find the following limits: (i) $\lim_{x\to 0} \frac{\frac{1}{x-1} + \frac{1}{x+1}}{x}$ (ii) $\lim_{x\to 0} \sin^2 x \cos\left(\frac{1}{x}\right)$

Q 2. Using $(\varepsilon - \delta)$ definition, show that $\lim_{x\to 11} \sqrt{x-7} = 2$