King Fahd University of Petroleum and Minerals					
Math 101	Quiz # 4(a)	Time: 20 minu	ites Dat	e: 12-4-2015	
Name	ID #	Sr #	Sec. 12	Marks:	
Q1. The variables <i>x</i> and <i>y</i> are differentiable functions of a variable <i>t</i> and are related by the equation $x^2 + xy + y^2 = 19$. If $\frac{dx}{dt} = -1$ when $x = 2$ and $y = 3$;					
then find the value	e of $\frac{dy}{dt}$.				

Fold University of Petroleum and Minerals

Q 2. If $y = \ln(\ln x)$, then find $x (\ln x)y'' + y'$.

King Fahd University of Petroleum and Minerals

Math 101	Quiz # 4(b)	Time: 20 minu	tes Date:	12-4-2015
Name	ID #	Sr #	Sec. 12	Marks:

Q1. At time t, the position of a body moving along the s - axis is $s(t) = t^3 - 6t^2 + 9t$ (s in meters, t in seconds).

Find the body's acceleration at the first time the velocity is zero.

Q 2. If
$$y = \frac{(x-1)(2x-1)^2}{(3x-1)^2(4x-1)^4}$$
; then calculate $\frac{dy}{dx}$ at x=0.

Math 101	Quiz # 4(c)	Time: 20 min	nutes Dat	te: 12-4-2015
Name	ID #	Sr #	Sec. 13	Marks:
Q1. Let $h(x) =$ 9. Find $g'(-x)$	= 2 $g(x) + f(\sqrt{g(x)})$ 1).) and $g'(-1) = 2$	7, $f'(3) = 18$	g, g(-1) =

King Fahd University of Petroleum and Minerals

Q 2. Find the equations of two lines through the origin and tangent to the curve of $x^2 - 4x + y^2 + 2 = 0$.

King Fahd University of Petroleum and Mi	nerals

Math 101	Quiz # 4(d)	Time: 20 minu	ites Date	e: 12-4-2015
Name	ID #	Sr #	Sec. 13	Marks:
01 If (1)	$\left(\frac{1}{\sqrt{x}}\right)^{x}$ (1) (1) (1)	-/(1)		1

Q1. If $y = (1 + \sqrt{x})^x$, then find y'(1).

Q 2. If $(0,\beta)$ is a point on the tangent line to the graph of $y = -\pi + 4 \sin^{-1}\left(\frac{1}{x}\right)$ at $x = \sqrt{2}$, then find the value of β .