King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics

MATH 101 - Exam I - Term 141

Duration: 90 minutes

Name: Key	ID Number:	
Section Number:	Serial Number:	
Class Time:	Instructor's Name:	
Instructions:		
1. Calculators and Mobiles are not allowed.		
2. Write neatly and eligibly. You may lose points for messy work.		
3. Show all your work. No points for answers without justification.		
4. Make sure that you have 7 pages of problems (Total of 6 Problems)		

Page Number	Points	Maximum
14 aumoer		Points
1		7
2		6
3		8
4		7
5		8
6		6
7		8
Total		50

Math 101, Exam I, Term 141

Page 1 of 7

1. (7 points) Sketch the graph of a function f that satisfies the following conditions:

$$(i) f(0) = 0,$$

$$(ii) \lim_{x \to -\infty} f(x) = 1,$$

(iii)f has a jump discontinuity at x = -1,

$$(iv)\lim_{x\to 0^-}f(x)=-\infty,$$

$$(v)\lim_{x\to 0^+} f(x) = \infty,$$

(vi) f has a removable discontinuity at x = 2.

$$(vii)\lim_{x\to\infty}f(x)=0$$

1- point for each condition.

other graphs are possible.

Math 101, Exam I, Term 141 Page 2 of 7

2. Find the limit if it exists. Justify your work.

a) (3 points)
$$\lim_{x \to 9} \frac{9 - x}{3 - \sqrt{x}}$$

b) (3 points)
$$\lim_{x \to -\infty} \frac{x}{\sqrt{x^2 + 1}}$$

Page 3 of 7

c) (4 points) $\lim_{x\to 0} \sin^2 x \cos\left(\frac{1}{x}\right)$

other by the Sequences Theorem (196)

d) (4 points) $\lim_{x\to 0} \frac{\sin(3x) \cot(5x)}{x \cot(4x)}$

Math 101, Exam I, Term 141

3. (7 **points**) Find the values of a and b so that the following function is continuous everywhere.

$$f(x) = \begin{cases} x^2 - 4x - 2 & \text{if } x < 2\\ 9x^2 - bx + 4 & \text{if } 2 \le x < 3\\ 2x - a + b & \text{if } x \ge 3 \end{cases}$$

Dif is continuous for xx2 (as it is a polynomial)

(1) for I to be continuous at xxx, we must have

$$\lim_{x\to 2} x^2 - 4x - 2 = -6$$
, $\lim_{x\to 2} (9x^2 - 6x + 4) = 40 - 26$

(ii) d x=3

Math 101, Exam I, Term 141 Page 5 of 7

4. a) (4 points) Use the Intermediate Value Theorem to show that the equation $2 - e^x = \sqrt{x}$ has a root between 0 and 1.

then, by themediate value Tream there is not seen that the seen that the

b) (4 points) Use the graph of $f(x)=2\sqrt{x+1}$ to find a number $\delta>0$ such that for all x, $0<|x-3|<\delta\Rightarrow|f(x)-4|<0.2$

2-3, 1-4, 2-5.2

 $P(X_{1}) = 3.8$ $\Rightarrow 2 \int X_{1} + 1 = 3.61 \Rightarrow X_{1} = 2.61$ $\Rightarrow X_{1} + 1 = 3.61 \Rightarrow X_{2} = 2.61$ $\Rightarrow 2 \int X_{2} + 1 = 4.2$ $\Rightarrow 3.41$ $\Rightarrow 3.41 = 3.41$ We have $S = min\{3 - 2.61, 3.41 - 3.14 - (1.91)\}$ We have $S = min\{3 - 2.61, 3.41 - 3.14 - (1.91)\}$ $\Rightarrow 3.8 = 3.81$ $\Rightarrow 2 \int X_{2} + 1 = 3.61 \Rightarrow X_{2} + 1 = 4.41$ $\Rightarrow 3.8 = 3.81$ $\Rightarrow 3.8 = 3.1$ $\Rightarrow 3.8 =$

Math 101, Exam I, Term 141

Page 6 of 7

5. (6 points) Find an equation for the tangent to the curve of $g(x) = \frac{3}{\sqrt{2x+7}}$ at the point (1,1). (You must use limits)

$$m = 8lope = \lim_{h \to 0} \frac{1}{h} \left[\frac{3}{J2(1+h)+2} - \frac{3}{J9} \right] (1PL)$$

$$= \lim_{h \to 0} \frac{1}{h} \left[\frac{3}{J2h+9} - \frac{1}{J2h+9} \right] (1PL)$$

$$= \lim_{h \to 0} \frac{1}{h} \left[\frac{3}{J2h+9} - \frac{1}{J2h+9} \right] (1PL)$$

$$= \lim_{h \to 0} \frac{1}{h} \left[\frac{3}{J2h+9} - \frac{1}{J2h+9} \right] (1PL)$$

$$= \lim_{h \to 0} \frac{1}{h} \left[\frac{3}{J2h+9} - \frac{1}{J2h+9} \right] (1PL)$$

$$= \lim_{h \to 0} \frac{1}{h} \left[\frac{3}{J2h+9} - \frac{1}{J2h+9} \right] (1PL)$$

$$= \lim_{h \to 0} \frac{1}{h} \left[\frac{3}{J2h+9} - \frac{1}{J2h+9} \right] (1PL)$$

$$= \lim_{h \to 0} \frac{1}{h} \left[\frac{3}{J2h+9} - \frac{1}{J2h+9} \right] (1PL)$$

$$= \lim_{h \to 0} \frac{1}{h} \left[\frac{3}{J2h+9} - \frac{1}{J2h+9} \right] (1PL)$$

$$= \lim_{h \to 0} \frac{1}{h} \left[\frac{3}{J2h+9} - \frac{1}{J2h+9} \right] (1PL)$$

$$= \lim_{h \to 0} \frac{1}{h} \left[\frac{3}{J2h+9} - \frac{1}{J2h+9} \right] (1PL)$$

$$= \lim_{h \to 0} \frac{1}{h} \left[\frac{3}{J2h+9} - \frac{1}{J2h+9} \right] (1PL)$$

$$= \lim_{h \to 0} \frac{1}{h} \left[\frac{3}{J2h+9} - \frac{1}{J2h+9} \right] (1PL)$$

$$= \lim_{h \to 0} \frac{1}{h} \left[\frac{3}{J2h+9} - \frac{1}{J2h+9} \right] (1PL)$$

$$= \lim_{h \to 0} \frac{1}{J2h+9} - \frac{1}{J2h+9} \left[\frac{3}{J2h+9} - \frac{1}{J2h+9} \right] (1PL)$$

$$= \lim_{h \to 0} \frac{1}{J2h+9} - \frac{1}{J2h+9}$$

6. a) (4 points) Use limits to find all horizontal asymptotes of the graph of $f(x) = \frac{|x-1| (x+1)}{(x^2-1)}.$

the two horizontal asymptotes

b) (4 points) Use limits to find all vertical asymptotes of the graph of $f(x) = \frac{|x-1|}{x(x^2-1)}$.

X = 0 %

: V.A are