King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics

MATH 101 - Exam I - Term 142

Duration: 90 minutes

KEY		
Name:	1D Number:	
Section Number:	Serial Number:	
Class Time:	Instructor's Name:	
Instructions:		
1. Calculators and Mobiles are not allowed.		
2. Write neatly and eligibly. You may lose points for messy work.		
3. Show all your work. No points for answers without justification.		
4. Make sure that you have 6 pages of problems (Total of 8 Problems)		

-	Points	Maximum
Number		Points
1	And And Andreas	8
2		19
3		10
4		18
5		14
6		10
7	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	8
8		13
Total		100

1. (8 points) Find the value of a that makes the following function

$$f(x) = \begin{cases} a + x & \text{if } x \le -1 \\ x + 1 & \text{if } x > -1 \end{cases}$$

continuous everywhere.

If
$$x < -1$$
, $f(x) = a - x$ is Continuous since It is a polynomial

If $x > -1$, $f(x) = x + 1$ is Continuous since It is a polynomial

. If
$$x > -1$$
, $f(x) = x + 1$
. Now f will be continuous at $x = -1$ if

$$\frac{1}{1} \lim_{x \to -1} f(x) = \lim_{x \to -1} f(x) = f(-1) \qquad (3)$$

$$\lim_{x \to -1} (a - x) = \lim_{x \to -1} f(x + 1) \qquad (2)$$

$$= \lim_{x \to -1} a + 1 = 0 \qquad (2)$$

$$\Rightarrow a = -1 \qquad \bigcirc$$

2. Find each limit or show that it does not exist.

(a) (5 points)
$$\lim_{x\to 0^{-}} \left(\frac{1}{x} - \frac{1}{|x|}\right)$$
.

$$= \lim_{x\to 0^{+}} \left(\frac{1}{2x} - \frac{1}{x}\right)$$
(a) $\lim_{x\to 0^{+}} \left(\frac{1}{2x} - \frac{1}{x}\right)$
(b) $\lim_{x\to 0^{+}} \left(\frac{1}{2x} - \frac{1}{x}\right)$
(c) $\lim_{x\to 0^{+}} \left(\frac{1}{2x} - \frac{1}{x}\right)$
(d) $\lim_{x\to 0^{+}} \left(\frac{1}{2x} - \frac{1}{x}\right)$
(e) $\lim_{x\to 0^{+}} \left(\frac{1}{2x} - \frac{1}{x}\right)$
(f) $\lim_{x\to 0^{+}} \left(\frac{1}{2x} - \frac{1}{x}\right)$
(f) $\lim_{x\to 0^{+}} \left(\frac{1}{2x} - \frac{1}{x}\right)$
(g) $\lim_{x\to 0^{+}}$

b) (6 points)
$$\lim_{t\to 1} \frac{\sin(t^3-1)}{3t^2-3}$$
.

$$=\lim_{t\to 1} \frac{3t^2-3}{t^3-1} \cdot \frac{t^3-1}{3(t^2-1)}$$

$$=\lim_{t\to 1} \frac{\sin(t^3-1)}{t^3-1} \cdot \frac{(t-1)(t^2+t+1)}{3(t-1)(t+1)} \cdot \frac{\sin(t^3-1)}{3(t+1)} \cdot \frac{t^2+t+1}{3(t+1)} \cdot \frac{(t-1)(t+1)}{3(t+1)} \cdot \frac{(t-1)(t+1)(t+1)}{3(t+1)} \cdot \frac{(t-1)(t+1)(t+1)(t+1)}{3(t+1)} \cdot \frac{(t-1)(t+1)(t+1)(t+1)(t+1)}{3(t+1)} \cdot \frac{(t-1)(t+1)(t+1)(t+1)}{3(t+1)} \cdot \frac{(t+1)(t+1)(t+1)(t+1)}{3(t+1)} \cdot \frac{(t+1)(t$$

$$0 = \frac{3}{3\cdot 2}$$

$$=\frac{1}{2}$$

Math 101, Exam I, Term 142

c) (8 points)
$$\lim_{x \to -\infty} (2x + \sqrt{4x^2 + 3x - 2})$$
. $\frac{2x - \sqrt{4x^2 + 3x - 2}}{2x - \sqrt{4x^2 + 3x - 2}}$ $= \lim_{x \to -\infty} \frac{-3 + \frac{2}{x}}{2x + \sqrt{4x^2 + 3x - 2}}$ $= \lim_{x \to -\infty} \frac{-3 + \frac{2}{x}}{2x + \sqrt{4x^2 + 3x - 2}}$ $= \lim_{x \to -\infty} \frac{-3 + 0}{2x + \sqrt{4x^2 + 3x - 2}}$ $= \lim_{x \to -\infty} \frac{-3 + 0}{2x + \sqrt{4x^2 + 3x - 2}}$ $= \frac{-3 + 0}{2x + \sqrt{4x^2 + 3x - 2}}$

$$\begin{array}{c}
-3 + \frac{2}{x} \\
-3 + \sqrt{4 + \frac{3}{x} - \frac{2}{x^2}} \\
-3 + \sqrt{4 + 0} = 0
\end{array}$$

3. (10 points) Find a number k so that the following limit

$$\lim_{x \to +2} \frac{3x^2 + kx + k + 3}{x^2 + x + 2}$$

exists. Then find the limit for the found value of k.

. Note that Denc. -> as x -> -2. If Num -> o when x -> -2, then then the given limit equals ± 00 (1.e, DNE). So for the limit to exists we must have

$$\lim_{k \to -2} 3x^{2} + kx + k + 3 = 0$$

$$12 - 2k + k + 3 = 0$$

$$12 - 2k + k + 3 = 0$$

$$1 = 15$$

$$1 = 15$$

, when k=15, we have

$$k=15, we have
\lim_{x \to -2} \frac{3x^2 + 15x + 18}{x^2 + 2x - 2} = \lim_{x \to -2} \frac{3(x+2)(x+3)}{(x+2)(x-1)}$$

$$= \lim_{x \to -2} \frac{3(x+3)}{(x-1)}$$

$$= \frac{3(1)}{-3}$$

$$= -1$$

Math 101, Exam I, Term 142

Page 3 of 6

4. Let
$$f(x) = \frac{\ln(2x+1)}{x^2+4}$$

a) (8 points) Where is f continuous?

It is continuous in Its domain:

So f is continuous on (-{1/2}) U(2, ∞), (4)

- b) (10 points) Find all vertical asymptotes of f. Justify your answer using limits.
- · We check oc = { (as It is a V.A. for ln(2x+1))

$$\lim_{X \to -\frac{1}{2}^{+}} \frac{\ln(2x+1)}{2c^{2}-4} = \frac{-\infty}{4} = \infty$$

. We check the Zeros of the denominator: $\alpha = \pm 2$. But Since x = -2 is not on the boundary of the domain (See part (a)), then we check only x=2.

$$\lim_{x\to 2^+} \frac{\ln(2x+1)}{x^2-4} = \infty$$

So the V.A. are

$$\infty = -\frac{1}{2}$$
 and $\infty = 2$.

- 5. Consider the curve $y = \frac{1}{x+1}$, x < 0, $x \neq -1$.
 - a)(8 points) Use limits to find the slope of the curve at any point $x = a \neq -1$.

Slope =
$$\lim_{h\to 0} \frac{f(a+h) - f(a)}{h}$$
 (2)
= $\lim_{h\to 0} \frac{1}{h} \left[\frac{1}{a+h+1} - \frac{1}{a+1} \right]$
= $\lim_{h\to 0} \frac{1}{h} \cdot \frac{-h}{(a+h+1)(a+1)}$ (2)
= $\lim_{h\to 0} \frac{-1}{(a+h)(a+1)}$ (1)
= $\frac{-1}{(a+1)^2}$ (2), $a \neq -1$

b) (6 points) Find all points at which the slope equals $-\frac{1}{4}$.

$$\Rightarrow$$
 $(\alpha+1)^2=4$

$$\Rightarrow a+1 = IZ$$

$$\Rightarrow a = -3 \quad \alpha \quad a = 1 \quad (1)$$

$$\Rightarrow q = -3 \quad \sin \alpha \times \langle 0 \rangle$$

The required point is
$$\left(-3, -\frac{1}{2}\right)$$
. (1)

6. (10 points) Use the graph of $f(x) = x^2 + 1$ to find a number $\delta > 0$ such that for all x,

$$0 < |x - 1| < \delta \Rightarrow |f(x) - 2| < \frac{1}{4}$$

[Note that $\sqrt{2}\approx 1.41, \sqrt{3}\approx 1.73, \sqrt{5}\approx 2.24, \sqrt{7}\approx 2.65]$

From the grouph

From the graph
$$P(x_1) = \frac{1}{4} \implies x_1^2 = \frac{3}{4}$$

$$P(x_1) = \frac{1}{4} \implies x_1 = \frac{3}{4}$$

$$P(x_1) = \frac{1}{4} \implies x_1 = \frac{3}{4}$$

$$f(x_2) = \frac{9}{4} \implies x_2^2 + 1 = \frac{9}{4} \implies x_2^2 = \frac{5}{4}$$

$$\implies x_2 = \frac{\sqrt{5}}{2}$$

$$S_1 = 1 - x_1 = 1 - \frac{13}{2} \approx 1 - 0.865 = 0.1350$$

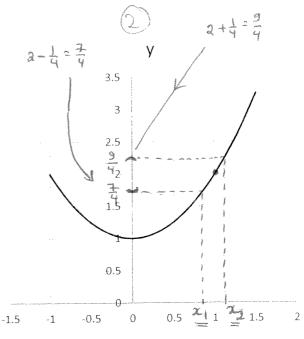
$$S_2 = x_2 - 1 = \frac{\sqrt{5}}{2} - 1 \approx 1.12 - 1 = 0.12$$

, we may chrose

$$S = min(81, 82)$$

= min(0.135, 0.12) = 0.12

(or any smaller positive number)



7. (8 points) Use the Intermediate Value Theorem to show that the equation $x^x = 3x - 1$ has a positive solution.

2 Let
$$f(x) = 3c^{2} - 3x + 1$$

$$(x = e^{x \ln x})$$

chance the interval [1,3]

$$f(1) = 1^{1} - 3(1) + 1 = -1 < 0$$

$$f(3) = 3^{3} - 3(3) + 1 = 19 > 0$$

$$f(3) = 3^{3} - 3(3) + 1 = 19 > 0$$

then, by IVT, there is a number ce (1,3) such that

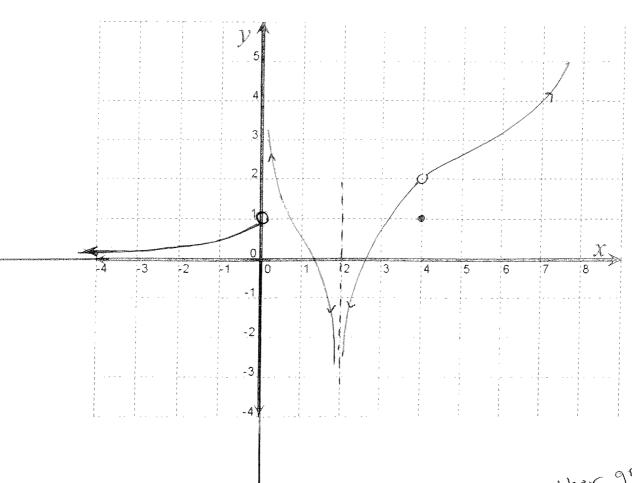


So the over equation has a positive solution.

- 8. (13 points) Sketch the graph of a function f that satisfies the following conditions:

 - (i) $\lim_{x \to -\infty} f(x) = 0$ (ii) $\lim_{x \to 0^+} f(x) = 1$ (iii) $\lim_{x \to 0^+} f(x) = \infty$
 - (iv) $\lim_{x \to 2} f(x) = -\infty$
 - (v) f has a removable discontinuity at x = 4.

 - 0 (vii) $\lim_{x \to \infty} f(x) = \infty$



other grouphs are Possible