Department of Mathematics and Statistics Semester 141

STAT302	Final Exam		Tuesday December 30, 2014
Name:		ID #:	
ERODAD	<u>Instructions:</u> ➤ Justify your we	ork	

- State theorems and results you are using S_{1}
- ➤ Show all details
- In hypothesis testing problems, write down the hypotheses, the rejection region, the decision and the conclusion.
- You will lose points for violations of the above rules

Question	Marks	Marks Obtained
1	5	
2	7	
3	6	
4	4	
5	6	
6	5	
7	12	
Total	45	

Let Y₁, ..., Y_n be a random sample from a uniform distribution on (θ, θ + 1).
 a) Is Y
 [¯] an unbiased estimator of θ? If yes, prove it. If no, find the bias. (2pts.)

b) If \overline{Y} is biased, find a function of \overline{Y} which is unbiased. (1*pt.*)

c) Find
$$MSE(\overline{Y})$$
. (2pts.)

2) Let *Y* be a single observation from the distribution

 $f_Y(y|\theta) = \begin{cases} \theta y^{\theta-1}, & 0 < y < 1\\ 0 & otherwise \end{cases} ; \quad \theta > 0$

a) Show that y^{θ} is a pivotal quantity.

b) Use this pivotal quantity to find a symmetric 90% confidence interval for θ .

(4pts.)

(3*pts.*)

3) Let Y_1, \dots, Y_n be a random sample from a population with density

$$f_{Y}(y|\theta) = \begin{cases} \theta y^{\theta-1}, & 0 < y < 1\\ 0 & otherwise \end{cases} \quad \theta > 0$$

a) Show that \overline{Y} is an unbiased estimator of $\frac{\theta}{\theta+1}$. (2*pts.*)

b) Is \overline{Y} a consistent estimator of $\frac{\theta}{\theta+1}$? Explain. (4*pts.*)

4) For testing H₀: θ = θ₀ vs H_a: θ > θ₀,
a) Give the rejection region for a large sample level α test. (1pt.)

b) Give a large sample $100(1 - \alpha)$ % lower confidence bound for θ . (1*pt*.)

c) What is the relationship between the two procedures? Explain. (2pts.)

5) Let Y_1, \dots, Y_n be a random sample from a population with density

$$f_{Y}(y|\theta) = \begin{cases} \frac{3y^{2}}{\theta^{3}}, & 0 \le y \le \theta \\ 0 & otherwise \end{cases}; \quad \theta > 0$$

a) Find a method of moments estimator for θ .

b) Find a sufficient statistic for θ .

c) Is the method of moments estimator found in a) above MVUE? Explain.

(2pts.)

(2pts.)

(2pts.)

6) Let Y_1, \dots, Y_n be a random sample from a population with density

$$f_{Y}(y|\theta) = \begin{cases} \frac{1}{\theta} e^{-y/\theta}, & y > 0\\ 0 & otherwise \end{cases} ; \ \theta > 0 \end{cases}$$

(5pts.)

Derive the most powerful test for $H_0: \theta = \theta_0$ vs $H_a: \theta = \theta_a$, where $\theta_a < \theta_0$.

7) An insurance company conducted a study on the relationship between lung disease and air pollution. Random samples of 400 adults from each of 4 cities gave the following results:

City	Number of adults with lung disease
Old Jubail	34
Jubail Industrial City	42
Dammam	21
Khobar	18

At the 5% significance level, do the data provide sufficient evidence to indicate a difference in the proportions with lung disease for the 4 cities? (12pts.)