Department of Mathematics and Statistics Semester 141

STAT302	Second Major Exam		Monday November 17, 2014
Name:		ID #:	
1) If $\hat{\theta}$ is a biased estimator for θ with bias 5, what is $E(\hat{\theta})$?			

2) Let Y have the probability density function

$$f_Y(y|\theta) = \begin{cases} \frac{2(\theta - y)}{\theta^2}, & 0 < y < 1\\ 0 & otherwise \end{cases}$$

Find a 90% upper confidence limit for θ .

3) Y_1, \dots, Y_n is a random sample from a distribution with variance σ^2 , and let

$$S_1^2 = \frac{1}{n} \sum_{1}^{n} (Y_i - \bar{Y})^2$$
 and $S_2^2 = \frac{1}{(n-1)} \sum_{1}^{n} (Y_i - \bar{Y})^2$.

 S_1^2 is superior to S_2^2 in regard to variance, while S_2^2 is superior to S_1^2 in regard to bias.

Considering the two criteria, bias and variance, together, which is the better estimator?

Hint: Think of a measure that incorporates both criteria.

4) Y_1, \dots, Y_n is a random sample from a Poisson distribution with parameter λ . Consider $\hat{\lambda}_1 = \frac{Y_1 + Y_2}{2}$, and $\hat{\lambda}_2 = \overline{Y}$. Find the efficiency of $\hat{\lambda}_1$ relative to $\hat{\lambda}_2$.

5) Y_1, \dots, Y_n are iid random variables from the following density

$$f_{Y}(y|\alpha,\theta) = \begin{cases} \frac{\alpha y^{\alpha-1}}{\theta^{\alpha}}, & 0 \leq y \leq \theta \\ 0, & otherwise \end{cases}$$

If θ is known, find a sufficient statistic for α .

6) Y_1, \dots, Y_n are iid random variables from the following density

$$f_Y(y|\theta) = \begin{cases} \frac{1}{2\theta + 1}, & 0 \le y \le 2\theta + 1\\ 0, & otherwise \end{cases}$$

Find the MLE for the variance of *Y*.

7) Y_1, \dots, Y_n are iid random variables from the following density

$$f_{Y}(y|\theta) = \begin{cases} \frac{2y}{\theta}e^{-\frac{y^{2}}{\theta}}, & y > 0\\ 0, & otherwise \end{cases}$$

Find MVUE for θ .