King Fahd University of Petroleum and Minerals

Department of Mathematics and Statistics

Math 690 Final Exam- 2014-2015 (141) Tuesday, December 30, 2014

Allowed Time: 180 minutes

Instructor: Dr. Boubaker Smii

Name: _____

ID #: _____

Section #: _____

Serial Number: _____

Instructions:

1. Write clearly and legibly. You may lose points for messy work.

2. Show all your work. No points for answers without justification !

Question #	Grade	Maximum Points
1		08
2		08
3		10
4		10
5		14
6		20
7		20
8		20
Total:		70

Exercise 1:

Let $X_1, X_2, ...$ be a sequence of random variables adapted to a filtrations $\mathcal{F}_1, \mathcal{F}_2, ...$

1- Show that if X_n is a martingale with respect to \mathcal{F}_n , then

$$\mathbb{E}(X_1) = \mathbb{E}(X_2) = \dots \tag{a}$$

2- Suppose that X_n is a martingale with respect to a filtration \mathcal{F}_n . Show that X_n is a martingale with respect to the filtration $\mathcal{G}_n = \sigma(X_1, ..., X_n)$.

Exercise 2:

Let ψ be a characteristic function of a given random variable X.

1- Prove that

$$Re\left(1-\psi(t)\right) \ge \frac{1}{4}Re\left(1-\psi(2t)\right)$$
 (b)

2- Deduce from equation (b) that

$$1 - |\psi(2t)| \le 8\left(1 - |\psi(t)|\right)$$
 (c)

Exercise 3: Consider a Markov Chain consisting of the three states 0, 1, 2 and having transition probability matrix:

$$\mathbf{P} = \left(\begin{array}{rrrr} 0.1 & 0.2 & 0.7 \\ 0.2 & 0.2 & 0.6 \\ 0.6 & 0.1 & 0.3 \end{array}\right)$$

- 1. Graph the given Markov Chain.
- 2. Compute the two step transition matrix \mathbf{P}^2 .
- 3. Find $P(X_2 = 1 \mid X_1 = 0)$.

Exercise 4:

Let $\{X_t, t \ge 0\}$ be an Itô process, a, b real constants and B_t the standard Brownian motion.

1- Find the solution of the stochastic differential equation:

$$dX_t = (a + \frac{b^2}{2}) X_t dt + b X_t dB_t,$$
 (d)

with initial condition $X(0) = X_0$.

2- Find the solution of the Linear stochastic differential equation

$$dX_t = a X_t dt + b X_t dB_t, (e)$$

with initial condition $X(0) = X_0$.

Exercise 5:

To describe the motion of a pendulum with small, random perturbations in its environment we consider the stochastic differential equation :

$$Y_t'' + \left(1 + \epsilon W_t\right) Y_t = 0; \quad Y_0, Y_0' \text{ given}, \tag{f}$$

where W_t is a one-dimensional white noise, ϵ a positive constant.

1- Show that the stochastic differential equation (f) can be written in the following form:

$$dX_t = K X_t \, dt - \epsilon \, L \, X_t \, dB_t, \tag{g}$$

where X_t, K, L are suitable matrices and B_t a Brownian motion.

2- Show that Y_t solves a stochastic Volterra equation of the form

$$Y_t = Y_0 + Y'_0 t + \int_0^t a(t,r) Y_r dr + \int_0^t \gamma(t,r) Y_r dB_r, \qquad (h)$$

where a(t,r) = r - t and $\gamma(t,r) = \epsilon (r - t)$.

Exercise 6:

Consider a model where the stock prices follow an Ornstein-Uhlenbeck process S(t). 1. Write down a stochastic differential equation for S(t).

2. Solve the stochastic equation found in 1.

3. Find the probability that at a certain time $t_1 > 0$ we will have negative prices. (Express the result as $\Phi(x)$, where Φ is the standard Normal distribution function and x a given real number.)

Exercise 7: Let $t_0^n < t_1^n < \cdots < t_n^n = T$, where $t_i^n = \frac{iT}{n}$, be a partition of the interval [0,T] into n equal parts. We denote by

$$\Delta_i^n B = B(t_{i+1}^n) - B(t_i^n) \tag{i}$$

the corresponding increments of the Brownian motion B(t).

Show that

$$\lim_{n \to +\infty} \sum_{i=0}^{n-1} (\Delta_i^n B)^2 = T, \quad in \ L^2.$$
 (j)

Exercise 8:

Let X_t be the price of a risky asset at time t. Assume that an investment of β_0 in bond yields an amount of $\beta_0 e^{rt}$, r > 0.

1- Write down an expression of the portfolio V_t depending on X_t and β_t .

2- Assume that the value V_t of your portfolio at time t is given by:

$$V_t = u(T - t, X_t), t \in [0, T],$$

for some smooth deterministic function u(t, x) and X_t a stochastic process satisfying:

$$X_t = X_0 + c \, \int_0^t \, X_s \, ds + \, \sigma \, \int_0^t \, X_s \, dB_s, \quad c > 0, \, \sigma > 0.$$

Express V_t in terms of u_1 , u_2 and u_{22} .