King Fahd University of Petroleum and Minerals

Department of Mathematics and Statistics

Math 690 Exam I- 2014-2015 (141) Monday, November 24, 2014 Allowed Time: 120 minutes

Instructor: Dr. Boubaker Smii

Name: _____

ID #: _____

Section #: _____

Serial Number: _____

Instructions:

1. Write clearly and legibly. You may lose points for messy work.

2. Show all your work. No points for answers without justification !

Question #	Grade	Maximum Points
1		08
2		08
3		10
4		10
5		14
6		20
Total:		70

Exercise 1:

Let $N(t), t \ge 0$ be a Poisson process with parameter λ . Show that $\lim_{t \to \infty} \frac{N(t)}{t} = \lambda$ a.s. **Hint:** You may use the Strong law of large numbers : $\lim_{n \to \infty} \frac{N(n)}{n} = \lambda$ a.s.

Exercise 2:

Consider the standard Brownian motion $\{B_t, t \ge 0\}$.

- a)- Find $\mathbb{E}(|B_t B_s|^2)$. b)- Given that $\int_{\mathbb{R}} e^{\frac{-(x-i\lambda t)^2}{2t}} dx = \sqrt{2\pi}$, compute the characteristic function of B_t .
- c)- Deduce from b) $\mathbb{E}(B_t^4)$.

Exercise 3: Consider the geometric Brownian motion given by $X_t = e^{\mu t + \sigma B_t}, t \ge 0, \sigma > 0, \mu \in \mathbb{R}$. 1- Find $\mathbb{E}(X_t)$ and $Var(X_t)$.

2- Give an application where we can use the geometric Brownian motion X_t .

<u>Exercise 4:</u>I- Let μ be a probability measure. Prove that $\hat{\mu}$ is a bounded, continuous function with $\hat{\mu}(0) = 1$.

II- Let X be a random variable exponentially distributed with parameter λ . Prove that $\mathbb{E}(X_t) = \frac{\lambda}{(\lambda - it)}, t \ge 0.$ **Exercise 5:** I- a). Give two major differences between the Riemann and $\text{It}\hat{o}$ integrals.

II- Let X_t, Y_t be Itô processes in \mathbb{R} . 1)- Prove that:

$$X_t Y_t = X_0 Y_0 + \int_0^t Y_s \, dX_s + \int_0^t X_s \, dY_s + \int_0^t \, dX_s \, dY_s$$

2)- Let $F_t = \exp(-\alpha B_t + \frac{1}{2}\alpha^2 t), \ \alpha \in \mathbb{R}.$ i)- Find dF_t .

ii)- Given that: $dY_t = r dt + \alpha Y_t dB_t$, $r \in \mathbb{R}$. Prove that $Y_t = Y_0 F_t^{-1} + r F_t^{-1} \int_0^t F_s ds$ (**Hint**: Use 1)).

Exercise 6:

Let $\overline{B_t \in \mathbb{R}, B_0} = 0$. Define $X_k(t) = \mathbb{E}(B_t^k), \ k = 0, 1, 2, ...; t \ge 0$. 1)- Prove that $X_k = \frac{k(k-1)}{2} \int_0^t X_{k-2}(s) \, ds, \ k \ge 2$.

2)- Deduce $\mathbb{E}(B_t^4)$ and $\mathbb{E}(B_t^6)$

3)- Show that $\mathbb{E}(B_t^{2k+1}) = 0$ and $\mathbb{E}(B_t^{2k}) = \frac{(2k)!t^k}{2^k k!}; \ k = 1, 2, \dots$