HW4 **Convex Analysis (Math 580)**

Term 141, Year 2014/15

Problem 1:

Let Ω_1 and Ω_2 be nonempty, convex subsets of \mathbb{R}^n . Suppose that $\operatorname{ri}\Omega_1\cap\operatorname{ri}\Omega_2\neq\emptyset$. Prove that

$$N(\bar{x}; \Omega_1 \cap \Omega_2) = N(\bar{x}; \Omega_1) + N(\bar{x}; \Omega_2)$$
 for all $\bar{x} \in \Omega_1 \cap \Omega_2$.

Problem 2:

Let $f_1, f_2 : \mathbb{R}^n \to \overline{\mathbb{R}}$ be convex functions satisfying the condition $\operatorname{ri}(\operatorname{dom} f_1) \cap \operatorname{ri}(\operatorname{dom} f_2) \neq \emptyset.$

Prove the for all $\bar{x} \in \text{dom } f_1 \cap \text{dom } f_2$ we have

$$\partial (f_1 + f_2)(\bar{x}) = \partial f_1(\bar{x}) + \partial f_2(\bar{x}), \quad \partial^{\infty} (f_1 + f_2)(\bar{x}) = \partial^{\infty} f_1(\bar{x}) + \partial^{\infty} f_2(\bar{x}).$$

Problem 3:

Find the Fenchel conjugate for each of the following functions on \mathbb{R} :

(i)
$$f(x) = e^x$$
.

(i)
$$f(x) = e^x$$
.
(ii) $f(x) = \begin{cases} -\ln(x) & x > 0, \\ \infty & x \le 0. \end{cases}$

Problem 4:

Define the function $f: \mathbb{R} \to \overline{\mathbb{R}}$ by

$$f(x) := \begin{cases} -\sqrt{1-x^2} & \text{if } |x| \le 1, \\ \infty & \text{otherwise.} \end{cases}$$

Show that f is a convex function and calculate its directional derivatives f'(-1; d) and f'(1; d) in the direction d = 1.