HW2 Convex Analysis (Math 580)

Term 141, Year 2014/15

Problem 1:

Show that the set $\{(x,t) \in \Re^n \times \Re | t \ge ||x||\}$ is closed and convex.

Problem 2:

The *indicator function* associated with a set $C \in \mathfrak{R}^n$ is defined by

$$\delta(x;C) := \begin{cases} 0, & \text{if } x \in C, \\ \infty, & \text{otherwise.} \end{cases}$$

- (i) Calculate $\delta(\cdot; C)$ for $C = \emptyset$, $C = \Re^n$, and C = [-1, 1].
- (ii) Show that the set C is convex set if and only if its indicator function $\delta(\cdot; C)$ is convex.

Problem 3:

Let X be a nonempty bounded subset of \mathfrak{R}^n . Show that cl(conv(X)) = conv(cl(X)). In particular, if X is compact, then conv(X) is compact.

Problem 4:

Construct an example of a point in a nonconvex set $X\,$ that has the prolongation property, but is not a relative interior point of $X\,$.

Problem 5:

Show that a function $f : \mathfrak{R}^n \to [-\infty, \infty]$ is lower semicontinuous at $x \in \mathfrak{R}^n$ if and only if for every $M \in \mathfrak{R}$ with f(x) > M there exists $\delta > 0$ such that

$$f(y) > M$$
 for all $y \in B_{\delta}(x)$.