King Fahd University of Petroleum and Minerals Department of Mathematic

Math 580: Convex Analysis Final Exam Fall 2014 Time Limit: 180 Minutes Student ID : Student Name :

You are required to show your work on each problem on this exam. The following rules apply:

- If you use a "fundamental theorem" you must indicate this and explain why the theorem may be applied.
- Organize your work, in a reasonably neat and coherent way, in the space provided. Work scattered all over the page without a clear ordering will receive very little credit.
- If you need more space, use the back of the pages; clearly indicate when you have done this.

Do not write in the table to the right.

	D • /	C
Problem	Points	Score
1	25	
2	25	
3	25	
4	25	
5	25	
6	25	
7	25	
8	25	
9	10	
10	10	
Total	220	

1. (25 points) Let C be a nonempty subset of \mathfrak{R}^n . For $x \in C$ and $y \in \mathfrak{R}^n$, define the set

$$\Lambda_{x,y} = \{\lambda \in \mathfrak{R} \mid x + \lambda y \in C\}.$$

Show that C is convex if and only if $\Lambda_{x,y}$ for all $x \in C$ and $y \in \mathfrak{R}^n$.

- 2. (25 points) Let C be a nonempty subset of \mathfrak{R}^n . Show that
 - (a) $\operatorname{ri}(C) = \operatorname{ri}(\operatorname{cl}(C)).$
 - (b) $\operatorname{cl}(C) = \operatorname{cl}(\operatorname{ri}(C)).$

- 3. (25 points) Left $f : \mathfrak{R}^n \to \overline{\mathfrak{R}}$ be a convex function with $\overline{x} \in \operatorname{dom}(f)$. Assume that f is bounded above on $\mathbb{B}_{\delta}(\overline{x})$ for some $\delta > 0$. Show that
 - (a) f is bounded on $\mathbb{B}_{\delta}(\bar{x})$.
 - (b) f is Lipschitz continuous on $\mathbb{B}_{\delta/2}(\bar{x})$.

4. (25 points) Show that the problem of finding a point $\bar{x} \in \Re^n$ such that

$$-\nabla f(\bar{x}) \in N(\bar{x}, \Omega)$$

is equivalent to the following convex optimization problem

$$\begin{array}{ll} \min & f(x) \\ \text{subject to} & x \in \Omega \end{array}$$

where $f: \Re^n \to \Re$ is a convex and differentiable function and $\Omega \subseteq \Re^n$ is a convex set.

5. (25 points) Let $f: \mathfrak{R}^n \to \mathfrak{R}$ be a convex function. Show that for every $x \in \mathfrak{R}^n$, we have

$$f'(x;y) = \max_{d \in \partial f(x)} y'd.$$

Math 580: Convex Analysis

6. (25 points) Consider the following function $f:\mathfrak{R}\to\mathfrak{R}$

$$f(x) = \max\{x^2, x^2 - 4x + 4\}.$$

- (a) Show that f is convex. (You may use graph of f to show its convexity)
- (b) Compute $\partial f(-1), \partial f(1)$ and $\partial f(2)$.

7. (25 points) Let $\Omega_1 = \{(x, y) \in \mathfrak{R}^2 \mid x \ge 1, y \ge 2\}, \Omega_2 = \{(x, y) \in \mathfrak{R}^2 \mid (x - 1)^2 + (y - 2) \le 25\}$ and consider the following extended real-valued function $f : \mathfrak{R}^2 \to \overline{\mathfrak{R}}$

$$f(x) = \begin{cases} x^2 + y^2 - \sin(\pi xy), & (x, y) \in \Omega_1 \cap \Omega_2 \\ \\ \infty, & \text{otherwise.} \end{cases}$$

- (a) Plot the effective domain of f.
- (b) Using graphs only (one separate graph for each requirement), find $\partial^{\infty} f(1,2)$, $\partial^{\infty} f(2,2)$ and $\partial^{\infty} f(5,3)$.
- (c) Find (\bar{x}, \bar{y}) such that $\partial f(\bar{x}, \bar{y}) = \{(3, 6)\}$

8. (25 points) Let $f: \mathfrak{R} \to \overline{\mathfrak{R}}$ be the following function

$$f(x) = \begin{cases} -\ln(x), & x > 0, \\ \\ \infty, & \text{otherwise.} \end{cases}$$

- (a) Find the Fenchel conjugate for f.
- (b) Find the Fenchel biconjugate for f at $x = e^3$.

9. (10 points) Let S be an arbitrary subset S of \Re^n . The negative polar cone of S, denoted by S^* , is defined as

$$S^* = \{ y \in \mathfrak{R}^n \mid \langle y, x \rangle \le 0 \text{ for all } x \in S \}.$$

Show that

- (a) S^* is a cone.
- (b) If $S_1 \subset S_2$ then $S_2^* \subset S_1^*$.
- (c) $S_1^* \cup S_2^* \subset (S_1 \cap S_2)^*$.

10. (10 points) Let $\Omega \subseteq \Re^n$ be a convex set. A function $f: \Omega \to \Re$ is said to be *quasiconvex* on Ω if

 $f(\lambda x + (1 - \lambda)y) \le \max\{f(x), f(y)\} \quad \text{ for all } \quad x, y \in \Omega \text{ and all } \lambda \in [0, 1].$

Show that f is quasiconvex on Ω if and only if the set

$$L_{\alpha}(f) = \{x \in \Omega | f(x) \le \alpha\}$$

is convex for every $\alpha \in \mathfrak{R}$.