King Fahd University of Petroleum & Minerals Department of Mathematics & Statistics Math 571 Final Exam The First Semester of 2014-2015 (141) Time Allowed

Time Allowed: 150 Minutes

Name:	ID#:

Q:1 Use Schur criterion to determine whether or not all zeros of the polynomial

 $P(z) = 3z^3 + 3z^2 + 2z + 1$ lie in the unit disc.

Q:2 Define
$$f : \mathbb{R}^3 \to \mathbb{R}^3$$
 by $f(y^1, y^2, y^3) = \begin{bmatrix} y^1 y^2 + y^3 \\ 2y^1 + 3y^2 y^3 \\ 5 + y^1 + y^2 + y^3 \end{bmatrix}$

Find the formulae for the elementary differentials F(t) for the threes $t = [\tau^2]$ and $t = [\tau^3]$.

Q:3 For the Runge–Kutta method $1 \frac{1}{2}$

find the elementary weights for the eight trees up to order 4. What is the order of the method.

- **Q:4** For the following pairs of polynomials $[\alpha(z), \beta(z)]$, determine if the corresponding numerical method is consistent and stable:
 - 1. $[1 z + z^2 z^3, 2z + z^2]$
 - 2. $[1-z^2-z^3, 2z-z^2]$

Q:5 Draw the following trees (i) $[[\tau]\tau^3]$, (ii) $[[\tau^2]\tau^2]$, (iii) $[\tau[\tau^2]]$.

Find the values of $\sigma(t)$, $\gamma(t)$, $\alpha(t)$, $\beta(t)$ for each tree. Also write the order condition for each tree.