King Fahd University of Petroleum & Minerals Department of Mathematics & Statistics Math 571 Midterm Exam The First Semester of 2014-2015 (141)

The First Semester of 2014-2015 (141)

<u>Time Allowed</u>: 120 Minutes

——	no: ID#:
	ne: ID#:
up t	Using tree method, develop a general third order 3-stage method. Make a table of trees o order 3 and write $\Phi(t)$ and $\gamma(t)$ for each tree. Solve the order conditions for $b_1 = 0$ and 1. Also write the corresponding numerical scheme.
	Develop a Taylor method of order 4 for the problem $y' = y - x^2 + 1$, $y(0) = 0.5$. Use $h = 0.5$ and simplify the numerical scheme.
Q:3	Find the coefficients β_i for the Adom-Bashforth method $y_n = y_{n-1} + \sum_{i=1}^3 \beta_i f(x_{n-i}, y_{n-i})$
	Show that $e_n \approx \frac{1}{12}h^3y'''(x_{n-1})$ for the method $y_n = y_{n-1} + \frac{h}{2}[f(x_{n-1}, y_{n-1}) + f(x_n, y_n)].$ Write order of the method.
Q:5	Find $\sigma(t)$, $\gamma(t)$, $\alpha(t)$, $\beta(t)$ for the following trees (i) $[[\tau^2]\tau^3]$, (ii) $[[\tau^3]\tau^2]$, (iii) $[[[\tau^2[\tau]]]]$