King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics MATH533 - Complex Variables Midterm Exam – Semester I, 2014-2015

Exercise 1

Suppose that *f* is analytic for |z| < 2 and α is a complex constant. Evaluate

$$I = \int_{|z|=1} (\operatorname{Re} z + \alpha) \frac{f(z)}{z} \, dz$$

Let *f* be an entire function and $n \in \mathbb{N}$, $n \ge 1$.

(i) Find
$$I_f = \int_{|z|=2} \frac{f(z)}{(z-1)^{n+2}} dz$$
.

(ii) What is the value of I_f if f is a polynomial of degree n?

True or false (if true, give a short explanation, if false, give a counterexample)

- (i) If *f* is an entire function and bounded on a half-plane, then *f* is constant.
- (ii) If *f* is analytic and bounded on |z| > 1, then *f* is constant.
- (iii) If *f* is entire and bounded on |z| > 1, then *f* is constant.
- (iv) If *f* is analytic in the punctured complex plane $\mathbb{C} \setminus \{0\}$ such that f(1/n) = 0, for all $n \ge 1$. Then f = 0.
- (v) Suppose *f* is analytic in the annulus $1 \le |z| \le R$, $|f(z)| \le R^n$ for |z| = R and $|f(z)| \le 1$ on |z| = 1. Then $|f(z)| \le |z|^n$ in the annulus.

In each case, exhibit a nonconstant f having the desired properties or explain why no such function exists:

(i) f is analytic in |z| < 1 with $f(\frac{1}{n}) = \frac{1}{n^2 + 1}$ for $n \in \mathbb{N}$. (ii) f is analytic in |z| < 1 with $f(\frac{1}{n}) = \frac{(-1)^n}{n}$, $n \ge 1$ (iii) f is analytic in |z| < 1 with $f(\frac{1}{n}) = \frac{1}{\sqrt{n}}$, $n \ge 1$. (iv) f is analytic in $\mathbb{C} \setminus \{0\}$ with $f'(z) = \frac{\cos z}{z}$

Prove the following sharper version of the Schwarz's lemma: If $f : \Delta \to \Delta$ is analytic with $f(0) = f'(0) = \dots f^{(n-1)}(0) = 0$, $n \in \mathbb{N}$, $n \ge 1$, then

$$|f(z)| \leq |z|^n$$
 for all $z \in \Delta$ and $|f^{(n)}(0)| \leq n!$

Moreover, $f(z) = az^n$ for some a, |a| = 1 if and only if either $|f^{(n)}(0)| = n!$ or $|f(c)| = |c|^n$ for some $c \in \Delta \setminus \{0\}$.

Let $\Delta = \{z \in \mathbb{C} : |z| < 1\}$ be the open unit disk and $\mathbb{H} = \{z \in \mathbb{C} : \text{Im}(z) > 0\}$ be the upper half-plane.

- 1. Show that $\varphi : \mathbb{H} \to \Delta$, $z \mapsto \frac{z-i}{z+i}$ is 1-1 analytic mapping and find φ^{-1} .
- 2. Let $f : \Delta \to \mathbb{H}$ be analytic, with f(0) = i. Show that

(a)
$$\frac{1-|z|}{1+|z} \le |f(z)| \le \frac{1+|z|}{1-|z|}$$

(b) $|f'(0)| \le 2$.

3. Find all analytic functions $f : \Delta \to \mathbb{H}$, such that f(0) = i and |f'(0)| = 2.