King Fahd University of Petroleum & Minerals Department of Mathematics & Statistics Math 513 Major Exam II The First Semester of 2014-2015 (141)

Time Allowed: 105 Minutes

Name:	ID#:
Section/Instructor:	Serial #:
 Mobiles and calculators are not allowed in this Write all steps clear. 	exam.

Question #	Marks	Maximum Marks
1		10
2		16
3		12
4		14
5		12
6		12
7		14
Total		90

Q:1 (10 points) Show that the fourier transform of $f(t) = \begin{cases} cos(at) & |t| < 1 \\ 0 & |t| > 1 \end{cases}$ is $F(w) = \frac{sin(w-a)}{w-a} + \frac{sin(w+a)}{w+a}$.

Q:2a (8 points) Use partial fractions to invert the Fourier transform: $F(w) = \frac{1}{(1 + w)(1 + 2iw)^2}.$

$$F(w) = \frac{1}{(1+w)(1+2iw)^2}.$$

Q:2b (8 points) Use the fact that $F[e^{-3t}H(t)] = \frac{1}{3+iw}$ and Parseval's equality to show that

$$\int_{-\infty}^{\infty} \frac{dx}{9 + x^2} = \frac{\pi}{3}.$$

Q:3 (12 points) Evaluate by Fourier transform $e^{-t}H(t) * e^{t}H(-t)$.

 $\mathbf{Q:4}$ (14 points) Solve the Sturm- Liouville problem:

$$y'' + \lambda y = 0,$$
 $y(0) + y'(0) = 0,$ $y(\pi) + y'(\pi) = 0.$

Q:5 (12 points) The Sturm-Liouville problem $y'' + \lambda y = 0$, y'(0) = y'(L) = 0 has the eigen function solutions $y_0(x) = 1$ and $y_n(x) = \cos(\frac{n\pi x}{L})$. Find the eigenfunction expansion for f(x) = x using these eigenfunctions.

Q:6 (12 points) Find the expansion with **five** nonvanishing coefficients in Legendre polynomials of the function: $f(x) = \begin{cases} 1 & 0 < x < 1 \\ 0 & -1 < x < 0 \end{cases}$

Q:7 (14 points) Let
$$A = \begin{pmatrix} 1 & 2 & 1 \\ 6 & -1 & 0 \\ -1 & -2 & -1 \end{pmatrix}$$
 (a) Find the eigenvalues of A

(b) Find an eigenvector corresponding to $\lambda=-4,$

Formula Sheet

If f(t) is a function with Fourier transform F(w), then

(I)
$$F[f(t-\tau)] = e^{-iw\tau}F(w)$$

(II)
$$F[f(kt)] = F(w/k)/|k|$$
, k is a scalar

(III)
$$F[F(t)] = 2\pi f(-w)$$

(IV)
$$F[f^{(n)}(t)] = (iw)^n F(w)$$

(V)
$$F[f(t)e^{iw_0t}] = F(w - w_0)$$