KFUPM, DEPARTMENT OF MATHEMATICS AND STATISTICS

MATH 421: FINAL EXAM, SEMESTER (141), DECEMBER 30, 2014

Math421: Introduction to Topology

Name :

ID :

Exercise	Points
1	20
2	20
3	20
4	20
5	20
6	20
7	24
8	20
9	11
Total	

Exercise 1. We equip \mathbb{R}^n with the usual topology. Let A be the closed unit ball of \mathbb{R}^n . Show that the interior int(A) of A is the open unit ball and the frontier Fr(A) is the unit sphere of \mathbb{R}^n .

Exercise 2. Let (X, d) be a metric space. We equip $X \times X$ with the distance δ defined by: for all $(x, y), (a, b) \in E \times E$;

$$\delta((x,y),(a,b)) = d(x,a) + d(y,b).$$

(1) Show that for each $x, y, a, b \in X$, we have

$$|d(x,y) - d(a,b)| \le d(x,a) + d(y,b).$$

(2) Deduce from (1) that the function

$$d: (X \times X, \delta) \longrightarrow (\mathbb{R}, |. - .|)$$
$$(x, y) \longmapsto d(x, y)$$

is uniformly continuous.

Exercise 3. Show that the function

$$\begin{array}{cccc} f: & \mathbb{R} & \longrightarrow & \mathbb{R} \\ & & x & \longmapsto & x^2 \end{array}$$

is not uniformly continuous but its restriction to any closed bounded subset of $\mathbb R$ is uniformly continuous.

Exercise 4. Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be a differentiable function such that $|f'(x)| < \frac{1}{2}$, for all $x \in \mathbb{R}$. Show that f has a unique fixed point (use Banach fixed point Theorem).

Exercise 5. Let (X, d) be a metric space and (x_n) be a Cauchy sequence of X. (a) Show that (x_n) is convergent if and only if it has a convergent subsequence.

(b) Suppose that (x_n) is nonconvergent. Show that $\{x_n : n \in \mathbb{N}\}$ is a closed set of X.

Exercise 6. Let $(X, d_1), (Y, d_2)$ be metric spaces and $f : X \longrightarrow Y$ be a uniformly continuous function. Show that if (x_n) is a Cauchy sequence of X, then $(f(x_n))$ is a Cauchy sequence of Y.

Exercise 7. Let (X, \mathcal{T}) be a topological space.

(a) Show that X is a T_1 -space if and only if every singleton of X is closed.

(b) Suppose that $\mathcal{T} = \mathcal{CF}$ is the co-finite topology on X. Show that (X, \mathcal{T}) is is a T_1 -space.

(c) Show that (X, \mathcal{CF}) is a T_2 -space if and only if X is finite.

(d) Let R be an equivalence relation on X and X/R be the quotient space. Show that X/R is a T_1 -space if and only if every equivalence class of R is closed in X.

Exercise 8. We equip \mathbb{R}^n with the usual topology. Give a homeomorphism between the one-point compactification of \mathbb{R}^n and the sphere

 $S^{n} := \{ u \in \mathbb{R}^{n+1} : ||u|| = 1 \}.$

Exercise 9. Let a < b be in \mathbb{R} . Show that there is no homeomorphism between the two intervals [a, b[and]a, b[.