KFUPM, DEPARTMENT OF MATHEMATICS AND STATISTICS

MATH 421: EXAM I, SEMESTER (141), OCTOBER 23, 2014

Math421: Introduction to Topology

Name :

ID :

Exercise	Points
1	50
2	25
3	25
Total	100

Exercise 1. Let \mathcal{U} be the usual topology on \mathbb{R} . Consider the two topologies on \mathbb{R} defined by:

 $\mathcal{LL} = \{ V \subseteq \mathbb{R} : \text{ if } x \in V, \text{ then there exist } a, b \in \mathbb{R} \text{ such that } x \in [a, b] \subseteq V \}$ and

 $\mathcal{UL} = \{ V \subseteq \mathbb{R} : \text{ if } x \in V, \text{ then there exist } a, b \in V \text{ such that } x \in]a, b] \subseteq V \}.$

The topology \mathcal{LL} (resp. \mathcal{UL}) is called the *lower limit topology* (resp., *upper limit topology*) on \mathbb{R} .

(1) Show that $\mathcal{B}_1 = \{[a, b]: a, b \in \mathbb{R}\}$ is a basis of \mathcal{LL} and $\mathcal{B}_2 = \{]a, b]: a, b \in \mathbb{R}\}$ is a basis of \mathcal{UL} .

(2) Show that:

- $\mathcal{U} \leq \mathcal{LL}$ and $\mathcal{U} \neq \mathcal{LL}$
- $\mathcal{U} \leq \mathcal{UL}$, and $\mathcal{U} \neq \mathcal{UL}$
- $\mathcal{LL} \not\leq \mathcal{UL}$ and $\mathcal{UL} \not\leq \mathcal{LL}$.

(3) Show that the function

$$f : (\mathbb{R}, \mathcal{LL}) \longrightarrow (\mathbb{R}, \mathcal{UL})$$

 $x \longrightarrow -x$

is a homeomorphism.

Let $g: \mathbb{R} \longrightarrow \mathbb{R}$ be the function defined by

$$g(x) = \begin{cases} x+1 & \text{if } x > 1 \\ \\ x & if & x \le 1 \end{cases}$$

(4) Is

$$g : (\mathbb{R}, \mathcal{U}) \longrightarrow (\mathbb{R}, \mathcal{U})$$

continuous?

(5) Is

$$g : (\mathbb{R}, \mathcal{LL}) \longrightarrow (\mathbb{R}, \mathcal{U})$$

continuous?

(6) Is

$$g : (\mathbb{R}, \mathcal{UL}) \longrightarrow (\mathbb{R}, \mathcal{U})$$

continuous?

Exercise 2. Let X be a set and

 $\mathcal{T}_{cc} = \{ U \subseteq X : U = \emptyset \text{ or } X - U \text{ is a countable set} \}.$

(a) Show that \mathcal{T}_{cc} is a topology on X.

(b) Show that (X, \mathcal{T}_{cc}) is discrete if and only if X is countable.

Exercise 3. Let X be a nonempty set and $d \in X$. Consider

$$\mathcal{T} = \{ U \subseteq X : U = X \text{ or } d \notin U \}.$$

(a) Show that \mathcal{T} is a topology on X.

(b) Show that for each $A \subseteq X$, we have $\overline{A} = A \cup \{d\}$.

(c) Suppose that $d \in A$; then find int(A).

(d) Suppose that $X = \{a, b, c, d\}$. List all the open sets and closed sets of (X, \mathcal{T}) .

11
