Math 321

Assignment # 1

Instructions: You need to

- 1- submit a hardcopy of your codes and results
- 2- send me your m-files (write your name in first line of each file. i.e. %Said Algarni).
- 1. Let x be this vector [0.001, 0.1] and $f(x) = e^x$, $g(x) = \sin x$ and $h(x) = \frac{1}{1-x}$. Use the following Taylor expansions (approximations) to **approximate** f(x), g(x) and h(x):

 $e^x \approx 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!}$, $\sin(x) \approx x - \frac{x^3}{3!}$, $\frac{1}{1 - x} \approx 1 + x + x^2 + x^3 + x^4$

Now, **find** the relative error for each approximation and then **plot** x versus each relative error using the function LOGLOG. (in one Figure)

2. Write a MATLAB code for the <u>Bisection's Method</u> and then use it to find the solution (accurate to within 10^{-5}) of

$$x - 2^{-x} = 0$$
 for $0 \le x \le 1$

3. Write a MATLAB code for the <u>Fixed-point Iteration's Method</u> and then use it to find the fixed point (accurate to within 10^{-8}) of

$$f(x) = x - \frac{x^3 + 4x^2 - 10}{3x^2 + 8x}$$
 with $x_0 = 1.5$ and $N_0 = 20$.

- 4. Write <u>one</u> MATLAB code for <u>both Newton's and Secant's Method</u>s and then use it to find the root (accurate to within 10^{-5}) of $\frac{1}{2} + \frac{1}{4}x^2 x \sin x \frac{1}{2}\cos 2x = 0$ with
 - a. $x_0 = \frac{\pi}{2}$ (for secant's method, use Newton to generate x_1)
 - b. $x_0 = 10\pi$. Any observations?