King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics Math 321 First Exam - Term 141 **Time allowed 1 hour and 30 minutes**

Full name: ID Number:

Question Number	Full Mark	Your Mark
Q1	3	
Q2	4	
Q3	10	
Q4	4	
Q5	12	
Q6	12	
Q7	10	
Q8	5	
Total	60	

Good Luck!

1. Consider the number $\pi = 3.14159265358979...$.

If we use the approximation $\pi \approx 3.14$, what is the relative error? Express your answer using chopping to a decimal normalized floating-point representation with 5 significant digits.

2. Suppose that fl(y) is 7-digit rounding approximation to y. Show that

$$\left|\frac{y-fl(y)}{y}\right| \le 0.5 \times 10^{-6}.$$

- a) Find p_3 using the Bisection Method for $f(x) = 2x^2 1$ in the interval [0, 1]. (Hence
- an approximation to p = 1/√2).
 b) Find an estimate of the number of iterations *n* that would guarantee an error |p_n p| to be less than 10⁻⁴.
- 3.

4. The equation $x \cos x = x \sin x$, has a root at $x = \frac{\pi}{4}$. Which (and why) of the following iteration process should be used to find this root?

$$x_{i+1} = x_i \tan x_i$$
 or $x_{i+1} = x_i \cot x_i$.

- a) Given the function values f(0) = 1, f(1) = 3, and f(2) = 11, find the quadratic interpolating polynomial $P_2(x)$.
 - b) If $|f'(x)| \le 1$, $|f''(x)| \le 1$, $|f'''(x)| \le 1$, $|f'''(x)| \le 1$, and $|f^{(4)}(x)| \le 1$, find an upper bound on the error for the Lagrange interpolating polynomial on the interval [0, 2].

5.

6. For a function f, the divided differences are given in the following table:

$$x_{0} = 1 \qquad f[x_{0}]$$

$$x_{1} = 1.2 \qquad 4 \qquad f[x_{0}, x_{1}] \qquad 1$$

$$x_{2} = 1.4 \qquad f[x_{2}] \qquad 3$$

- a) Determine the missing entries in the above table.
- b) Find an approximation for f(1.1) and f(1.3). (one with Newton Forward-Divide Difference and the other one with Newton Backward-Divide Difference)

7. A natural cubic spline S of a function f on [0, 2] is defined by

$$S(x) = \begin{cases} S_0(x) = 1 + 2x - x^3, & \text{for } 0 \le x < 1, \\ S_1(x) = a + b(x - 1) + c(x - 1)^2 + d(x - 1)^3, & \text{for } 1 \le x \le 2. \end{cases}$$

Find *a*, *b*, *c*, and *d* and find an approximation to *f*(1.1).

8. If $L_k(x)$ is the Lagrange interpolating polynomials. i.e.

$$L_k(x) = \prod_{\substack{i \neq k \\ i=0}}^n \frac{x - x_i}{x_k - x_i}.$$

Show that $\sum_{k=1}^{n} L_k(x) = 1$, for any real *x*, integer *n*, and any set of distinct points x_1, \ldots, x_n .