King Fahd University of Petroleum & Minerals Department of Mathematics & Statistics Instructor: Khaled Furati

MATH 311 - Final Exam - Term 141

Duration: 150 minutes

Student Name:

Question	Points	Maximum
Number		Points
1		8
2		6
3		6
4		6
5		4
6		5
7		5
8		5
9		5
Total		50

- 1. State (without explanation) whether the following statements are true or false.
 - (a) If (x_n) is bounded convergent sequence then $\overline{\lim}(x_n) = \underline{\lim}(x_n)$.
 - (b) If $f : A \to \mathbb{R}$ is a uniformly continuous function then f is a Lipschitz function on A.
 - (c) If a series is convergent in \mathbb{R} then any series obtained from it by grouping is also convergent.
 - (d) If a series is convergent in \mathbb{R} then any series obtained from it by rearrangement is also convergent.
- 2. Prove the following: A number $c \in \mathbb{R}$ is a cluster point of a subset A of \mathbb{R} if and only if there exists a sequence (a_n) in A such that $\lim(a_n) = c$ and $a_n \neq c$ for all $n \in \mathbb{N}$.
- 3. Let f be continuous on [a, b] and differentiable on (a, b). Show that if f'(x) = 0 for $x \in (a, b)$ then f is constant on [a, b].
- 4. State without proof the following.
 - (a) The <u>first form</u> and <u>second form</u> of the Fundamental Theorem of Calculus.
 - (b) Lebesgue's integrability Criterion.
- 5. Prove that if a series in \mathbb{R} is absolutely convergent then it is convergent.
- 6. Test the following series for convergence and for absolute convergence.

$$\sum_{n=1}^{\infty} \frac{(-1)^n \ 2^n}{n^2}$$

7. Establish the convergence or divergence of the series

$$\sum_{n=1}^{\infty} \frac{\sqrt{n}}{2n^2 - 1}.$$

8. Establish the convergence or divergence of the series

$$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2}.$$

9. Use Abel's test to show the convergence of the series

$$\sum_{n=1}^{\infty} n^{\frac{1}{n}-2}.$$