King Fahd University of Petroleum & Minerals Department of Mathematics & Statistics Instructor: Khaled Furati

MATH 311 - Exam 2 - Term 141

Duration: 90 minutes

Student Name:

- 1. Define the following.
 - (a) Continuity of a function at a point.
 - (b) Uniformly continuous function on an interval.
- 2. Let f, g be defined on $A \subseteq \mathbb{R}$ to \mathbb{R} , and let c be a cluster point of A. Suppose that f is bounded on a neighborhood of c and that $\lim_{x\to c} g = 0$. Prove that $\lim_{x\to c} fg = 0$.
- 3. Show that the function

$$f(x) = \begin{cases} x \sin(1/x), & x \neq 0, \\ 0, & x = 0, \end{cases}$$

is continuous at every point $c \in \mathbb{R}$.

- 4. Let $g : \mathbb{R} \to \mathbb{R}$ be a positive function such that g(0) = 1 and g(x+y) = g(x)g(y) for all x, y in \mathbb{R} . Show that if g is continuous at x = 0, then g is continuous at every point of \mathbb{R} .
- 5. Let $f : [a, b] \to \mathbb{R}$ be increasing on [a, b] and $f(a) = \inf\{f(x) : x \in (a, b)\}$. Show that f is continuous at a.

Question	Points	Maximum
Number		Points
1		10
2		10
3		10
4		10
5		10
Total		50