King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics

Math 302 Final Exam Semester (141) Dec. 30, 2014 at 8:00-11:00 AM

Name:

I.D: Section: Serial:

Question	Points
1	/14
2	/14
3	/14
4	/14
5	/14
6	/14
7	/14
8	/14
9	/14
10	/14
Total	/140

a. Let $A = \begin{pmatrix} -1 & 3 & 0 \\ 3 & -2 & 1 \\ 0 & 1 & 2 \end{pmatrix}$, use the Guaussian elimination method to find A^{-1} .

b. Use (a) to **solve** the system

$$\begin{cases} -x_1 + 3x_2 = 1\\ 3x_1 - 2x_2 + x_3 = 0\\ x_2 + 2x_3 = 0 \end{cases}$$

Let
$$A = \begin{pmatrix} 1 & 0 & 7 \\ 0 & 1 & 0 \\ 7 & 0 & 1 \end{pmatrix}$$

a) Find all **eigenvalues** of A and the corresponding **eigenvectors.**

b) **Find** a matrix **P** that diagonalizes A.

c) If $D = P^{-1}AP$, find D^4 and write a formula to evaluate A^4 .(Do not calculate A^4)

Find $\oint_C (-xy)dx + (e^{-y^2})dy$, where *C* is the positively oriented closed path consisting of the quarter circle joining the points (2,0), (0,2), the line segment joining the points (0,2), (-2,0), and the line segment joining the points (-2,0), (2,0).

Let $\mathbf{F}(x, y, z) = xy^2\mathbf{i} + yx^2\mathbf{j} + xy\mathbf{k}$ be a field and S be the surface enclosing the volume between the paraboloids $z = 4 - x^2 - y^2$ and $z = 1 - x^2 - y^2$ and above the x – axis.

Find the flux \iint_S F. n dS, where **n** is the outer unit normal vector to S.

- a. Let $f(z) = x^2 x + y + i(y^2 5y x)$. Show that f(z) is differentiable at $z_0 = 3 + 5i$ and find $f'(z_0)$.
- b. If $f(z) = e^x \cos y + iv(x, y)$ is an analytic function for any z.

Find v(x, y) and write f(z) in terms of z.

- a. If $\ln(-ei) = a + ib$, find a and b.
- b. **Solve:** $2\cosh z + \sinh z = 2$.
- c. **Show** that $i\pi$ is a period for the periodic function $f(z) = \tanh z$.

Use Cauchy's integral formulas to evaluate

$$I = \oint_C \frac{\sin z}{z^4 + z^2} dz$$
, where *C* is the circle $|z - i| = \frac{3}{2}$.

Let $f(z) = \frac{e^{-iz^2} - 1}{z^5}$.

a. Find the Laurent series in |z| > 0 and classify its pole.

b. Use the result in (a) to find $\oint_C f(z) dz$, where C is given in the adjacent figure.

Use the residue theorem to evaluate

$$\oint_C \frac{e^z - 1}{z^2(z-1)^2} dz$$
, where *C* is the circle $|z| = 2$.

Question 10

<u>(14 points)</u>

Compute $\int_{-\infty}^{+\infty} \frac{2x^2 - 1}{x^4 + 5x^2 + 4} dx.$