King Fahd University of Petroleum & Minerals Department of Mathematics and Statistics MATH 301 – Methods of Applied Mathematics FINAL EXAM 2014-2015 (141)

Tuesday, December 30, 2014

Allowed Time: 150 min.

ANSWER KEY

Instructions:

- 1. Write neatly and legibly. You may lose points for messy work.
- 2. Show all your work for written questions. No points for answers without justification.
- 3. Calculators and Mobiles are not allowed.
- 4. Make sure that you have 11 different problems (6 pages + cover page).

MCQ	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8
ANSWER	Α	Α	Α	Α	Α	Α	Α	Α

WRITE ANSWERS TO MCO HERE.

Problem No.	Points	Maximum Pts
MCQ		64
9		28
10		22
11		26
Total		140

MATH 301 / FINAL EXAM (Term 141)

Q1 (8 pts): If
$$f(t) = \mathcal{L}^{-1}\left\{\frac{2s}{s^2 - 4s + 3}\right\}$$
, then $f(0)$ is equal to
(A) 2 (B) 1 (C) -2 (D) 4 (E) 0

Q2 (8 pts): If
$$f(t) = \mathcal{L}^{-1} \left\{ \frac{s}{s^2 + 2s + 2} \right\}$$
, then $f(\frac{\pi}{4})$ is equal to
(A) 0 (B) $\sqrt{2}e^{-\frac{\pi}{4}}$ (C) $\frac{1}{\sqrt{2}}e^{-\frac{\pi}{4}}$ (D) $\frac{1}{\sqrt{2}}e^{\frac{\pi}{4}}$ (E) $e^{-\pi}$

Q3 (8 pts): If
$$F(s) = \mathcal{L}\left\{\int_0^t e^{3\tau} \cos 2(t-\tau) d\tau\right\}$$
, then $F(4)$ is equal to
(A) $\frac{1}{5}$ (B) $\frac{4}{17}$ (C) $\frac{4}{51}$ (D) $\frac{1}{10}$ (E) $\frac{1}{15}$

<u>Q4 (8 pts)</u>: If $\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos n\pi x + b_n \sin n\pi x)$

is the Fourier series of f(x) = x + 1 on the interval [-1,1], then $a_0 + a_1 + b_2$ is equal to

(A)
$$\frac{2\pi - 1}{\pi}$$
 (B) $\frac{\pi - 1}{\pi}$ (C) $\frac{2\pi^2 - 2}{\pi^2}$ (D) $\frac{2\pi + 1}{\pi}$ (E) $\frac{2\pi - 2}{\pi}$

 $\underline{\textbf{Q5 (8 pts)}}: \text{ If the solution of the BVP} \qquad \begin{cases} 4u_{xx} = u_{tt}, & 0 < x < 1, t > 0 \\ u(0,t) = 0, u(1,t) = 0, & t > 0 \\ u(x,0) = 0, u_t(x,0) = 9, & 0 < x < 1 \end{cases}$

is given by $u(x,t) = \sum_{n=1}^{\infty} B_n \sin 2n\pi t \sin n\pi x$, then the value of B_3 is equal to (A) $\frac{2}{\pi^2}$ (B) $\frac{12}{\pi}$ (C) $\frac{1}{\pi^2}$ (D) $\frac{6}{\pi}$ (E) $\frac{6}{\pi^2}$

<u>**Q6** (8 pts)</u>: If $\sum_{n=0}^{\infty} C_n P_n(x)$ is the Legendre series expansion of $f = \begin{cases} 0, -1 < x < 0 \\ 4x^2, 0 \le x < 1 \end{cases}$ then the value of C_2 is equal to

(A) $\frac{4}{3}$ (B) $\frac{5}{2}$ (C) $\frac{10}{3}$ (D) $\frac{5}{4}$ (E) $\frac{8}{3}$

<u>O7 (8 pts)</u>: Consider the regular Sturm-Liouville problem

$$x^{2}y'' + 5xy' + \lambda y = 0,$$
 $y(1) = 0, y(2) = 0$

and let y_n and y_m be two eigenfunctions corresponding to two different eigenvalues. Which of the following is **true**?

(A)
$$\int_{1}^{2} x^{3} y_{n}(x) y_{m}(x) dx = 0$$

(B) $\int_{1}^{2} y_{n}(x) y_{m}(x) dx = 0$
(C) $\int_{1}^{2} x y_{n}(x) y_{m}(x) dx = 0$
(D) $\int_{1}^{2} \frac{1}{x^{2}} y_{n}(x) y_{m}(x) dx = 0$
(E) $\int_{1}^{2} x^{2} y_{n}(x) y_{m}(x) dx = 0$

<u>Q8 (8 pts)</u>: Consider the following Laplace's equation in cylindrical coordinates

$$\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{\partial^2 u}{\partial z^2} = 0, \qquad 0 < r < 1, 0 < z < 1$$

Using the separation of variables u(r, z) = R(r)Z(z), with a separation constant $-\alpha^2$, a bounded product solution of this PDE is given by

(A)
$$u(r,t) = (c_1 \cosh \alpha z + c_2 \sinh \alpha z) J_0(\alpha r)$$
 (B) $u(r,t) = c e^{\alpha^2 z} J_0(\alpha r)$
(C) $u(r,t) = (c_1 \cos \alpha z + c_2 \sin \alpha z) J_0(\alpha r)$ (D) $u(r,t) = r^{\alpha} (c_1 \cos \alpha z + c_2 \sin \alpha z)$
(E) $u(r,t) = r^{\alpha} (c_1 \cosh \alpha z + c_2 \sinh \alpha z)$

<u>Q9 (28 pts)</u>: Use the method of <u>separation of variables</u> to solve the heat equation

 $\frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t}, \qquad 0 < x < \pi, \ t > 0$ $u(0,t) = 0, \ u(\pi,t) = 0, \ t > 0$ Subject to $u(x, 0) = f(x), \qquad 0 < x < \pi$ **Solution**: Let $u(x,t) = X(x)T(t) \underset{\text{in the PDF}}{\Longrightarrow} X^{''}T = XT' \Longrightarrow \frac{X''}{x} = \frac{T'}{T} = -\lambda$ <u>3</u> • $u(0,t) = 0 \Longrightarrow X(0)T(t) = 0 \Longrightarrow X(0) = 0$ 1 <u>1</u> • $u(\pi, t) = 0 \Longrightarrow X(\pi)T(t) = 0 \Longrightarrow X(\pi) = 0$ $(1)\frac{T'}{T} = -\lambda \Longrightarrow \cdots \Longrightarrow T(t) = ce^{-\lambda t}$ <u>3</u> $(2)\frac{X''}{Y} = -\lambda \Longrightarrow X'' + \lambda X = 0, \qquad X(0) = 0 \text{ and } X(\pi) = 0$ 1 Solving (2): $m^2 + \lambda = 0 \implies m = +\sqrt{-\lambda}$ 1 • Case I: $-\lambda = 0 \Longrightarrow m = 0, 0 \Longrightarrow X(x) = c_1 + c_2 x$ 1 • $X(0) = 0 \Longrightarrow c_1 = 0 \Longrightarrow X(x) = c_2 x$ <u>1</u> • $X(\pi) = 0 \Longrightarrow c_2 \pi = 0 \Longrightarrow c_2 = 0 \Longrightarrow X(x) \equiv 0$ the trivial solution <u>1</u> • Case II: $-\lambda > 0$, so we put $-\lambda = \alpha^2$ ($\alpha > 0$) $\Rightarrow m = \pm \sqrt{\alpha^2} = \alpha, -\alpha$ 1 $\Rightarrow X(x) = c_1 \cosh \alpha x + c_2 \sinh \alpha x$ <u>1</u> • $X(0) = 0 \Longrightarrow c_1 = 0 \Longrightarrow X(x) = c_2 \sinh \alpha x$ 1 • $X(\pi) = 0 \Longrightarrow c_2 \sinh \alpha \pi = 0 \Longrightarrow c_2 = 0 \Longrightarrow X(x) \equiv 0$ the trivial solution • Case III: $-\lambda < 0$, so we put $-\lambda = -\alpha^2$ ($\alpha > 0$) $\Rightarrow m = \pm \sqrt{-\alpha^2} = \pm \alpha i$ $\Rightarrow X(x) = c_1 \cos \alpha x + c_2 \sin \alpha x$ 1 • $X(0) = 0 \Longrightarrow c_1 = 0 \Longrightarrow X(x) = c_2 \sin \alpha x$ 1 • $X(\pi) = 0 \Longrightarrow c_2 \sin \alpha \pi = 0 \Longrightarrow$ we take $c_2 \neq 0$ and $\sin \alpha \pi = 0$ $\Rightarrow \alpha \pi = n\pi \Rightarrow \alpha = n$, n = 1,2,3,...2

 \implies the eigenvalues are $\lambda_n = n^2$ and the nontrivial solutions are

<u>2</u>

<u>3</u>

$$X_n(x) = c_2 \sin nx$$

1 Now, we use $\lambda_n = n^2$ in (1) to get $T_n(t) = ce^{-n^2t}$ So, product solutions are

1
$$u_n(x,t) = X_n T_n = (c_2 \sin nx) (ce^{-n^2 t}) = A_n e^{-n^2 t} \sin nx,$$

Then, by superposition principle, the general solution is

$$u(x,t) = \sum_{n=1}^{\infty} A_n e^{-n^2 t} \sin nx$$

Using the initial condition u(x, 0) = f(x), we find that

$$f(x) = \sum_{n=1}^{\infty} A_n \sin nx$$

which is the sine series of f(x). Therefore

$$A_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx \, dx$$

Hence, the solution is:

$$u(x,t) = \sum_{n=1}^{\infty} \left(\frac{2}{\pi} \int_0^{\pi} f(x) \sin nx \, dx\right) e^{-n^2 t} \sin nx$$

 $n = 1, 2, 3, \dots$

Q10 (22 pts): Use the **Laplace transform** to solve the wave equation

$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial t^2}, \qquad x > 0, \ t > 0$$

Subject to
$$u_x(0,t) = t^2, \quad \lim_{x \to \infty} u(x,t) = 0, \quad t > 0$$
$$u(x,0) = 0, \quad u_t(x,0) = 0, \quad x > 0$$

Solution: We take the Laplace transform with respect to the variable t

$$\pounds \qquad \qquad \pounds \left\{ \frac{\partial^2 u}{\partial x^2} \right\} = \pounds \left\{ \frac{\partial^2 u}{\partial t^2} \right\} \Longrightarrow \frac{\partial^2 U(x,s)}{\partial x^2} = s^2 U(x,s) - su(x,0) - u_t(x,0)$$

$$\implies \frac{\partial^2 U(x,s)}{\partial x^2} - s^2 U(x,s) = 0$$

The auxiliary equation is: $m^2 - s^2 = 0 \implies m = \pm s \implies U(x, s) = c_1 e^{-sx} + c_2 e^{sx}$ <u>3</u> Now, we take the Laplace transform of the remaining conditions

$$\underline{2} \qquad (a) \mathcal{L}\left\{\lim_{x \to \infty} u(x,t)\right\} = \mathcal{L}\left\{0\right\} \Longrightarrow \lim_{x \to \infty} U(x,s) = 0$$
$$\underline{2} \qquad (b) \mathcal{L}\left\{u_x(0,t)\right\} = \mathcal{L}\left\{t^2\right\} \Longrightarrow U_x(0,s) = \frac{2}{3}$$

(b)
$$\mathcal{L}{u_x(0,t)} = \mathcal{L}{t^2} \Longrightarrow U_x(0,s) = \frac{2}{s^3}$$

• Using (a) gives:
$$c_2 = 0 \Longrightarrow U(x,s) = c_1 e^{-sx}$$

• Using (b) gives:
$$-c_1 s = \frac{2}{s^3} \Longrightarrow c_1 = -\frac{2}{s^4}$$

$$\frac{2}{2} \qquad \qquad \therefore U(x,s) = -\frac{2}{s^4} e^{-sx}$$

$$\underbrace{4}{=} \qquad \implies u(x,t) = \mathcal{L}^{-1} \left\{ -\frac{2}{s^4} e^{-sx} \right\} = -\frac{1}{3} (t-x)^3 \mathcal{U}(t-x)$$

$$= \begin{cases} 0, & 0 \le t < x \\ -\frac{1}{3} (t-x)^3, & t \ge x \end{cases}$$

MATH 301 / FINAL EXAM (Term 141)

<u>Q11 (26 pts)</u>: The steady-state temperature in a semi-infinite plate is modeled by

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0, \qquad x > 0, \quad 0 < y < \pi$$
$$u_x(0, y) = \sin y, \qquad 0 < y < \pi$$
$$u(x, 0) = 0, \quad u(x, \pi) = f(x) = \begin{cases} 1, & 0 < x \le 1\\ 0, & x > 1 \end{cases}$$

Use either the **Fourier sine or cosine transform** to solve this IBVP.

<u>1</u> Solution: Using Fourier cosine transform with respect to the variable *x*

$$\begin{array}{l} \underline{4} \\ \underline{4} \\ \mathcal{F}_{c}\left\{\frac{\partial^{2}u}{\partial x^{2}}\right\} + \mathcal{F}_{c}\left\{\frac{\partial^{2}u}{\partial y^{2}}\right\} = 0 \Longrightarrow -\alpha^{2}U(\alpha, y) - u_{x}(0, y) + \frac{\partial^{2}U(\alpha, y)}{\partial y^{2}} = 0 \\ \\ \underline{1} \\ \underline{3} \\ \underline{3} \\ \frac{\partial^{2}U(\alpha, y)}{\partial y^{2}} - \alpha^{2}U(\alpha, y) = \sin y \\ \end{array}$$

This is a nonhomogeneous ODE $\Rightarrow U = U_c + U_p$

<u>3</u>

2

First, we find the complementary solution U_c of the associated homogeneous equation

$$\underline{3} \qquad \frac{\partial^2 U(\alpha, y)}{\partial y^2} - \alpha^2 U(\alpha, y) = 0 \Longrightarrow m^2 - \alpha^2 = 0 \Longrightarrow m = \pm \alpha \Longrightarrow U_c = c_1 \cosh \alpha y + c_2 \sinh \alpha y$$

Now, since the right side of (*) is $\sin y$, then to find a particular solution U_p of (*) we try with $U_p = A \sin y + B \cos y$ which we substitute in (*) to get

$$-A\sin y - B\cos y - \alpha^2(A\sin y + B\cos y) = \sin y$$

$$\Rightarrow -A(1+\alpha^2)\sin y - B(1+\alpha^2)\cos y = \sin y \Rightarrow -A(1+\alpha^2) = 1 \text{ and } -B(1+\alpha^2) = 0$$

$$\Rightarrow A = -\frac{1}{1+\alpha^2}$$
 and $B = 0 \Rightarrow U_p = -\frac{1}{1+\alpha^2} \sin y$

Hence, $U(\alpha, y) = U_c + U_p = c_1 \cosh \alpha y + c_2 \sinh \alpha y - \frac{1}{1 + \alpha^2} \sin y$ (**)

Now, we take the Fourier cosine transform of the remaining boundary conditions

$$\frac{1}{4} \qquad (a) \mathcal{F}_{c}\{u(x,0)\} = \mathcal{F}_{c}\{0\} \Longrightarrow U(\alpha,0) = 0$$

$$\frac{4}{2} \qquad (b) \mathcal{F}_{c}\{u(x,\pi)\} = \mathcal{F}_{c}\{f(x)\} \Longrightarrow U(\alpha,\pi) = \int_{0}^{\infty} f(x) \cos \alpha x \, dx = \int_{0}^{1} \cos \alpha x \, dx = \frac{\sin \alpha}{\alpha}$$

• Using (a) in (**) gives:
$$c_1 = 0 \Rightarrow U(\alpha, y) = c_2 \sinh \alpha y - \frac{1}{1+\alpha^2} \sin y$$

• Using (b) gives:
$$c_2 \sinh \alpha \pi = \frac{\sin \alpha}{\alpha} \Longrightarrow c_2 = \frac{\sin \alpha}{\alpha \sinh \alpha \pi}$$

<u>2</u>

$$\therefore U(\alpha, y) = \frac{\sin \alpha}{\alpha \sinh \alpha \pi} \sinh \alpha y - \frac{1}{1 + \alpha^2} \sin y$$

$$\Rightarrow u(x, y) = \mathcal{F}_c^{-1} \left\{ \frac{\sin \alpha}{\alpha \sinh \alpha \pi} \sinh \alpha y - \frac{1}{1 + \alpha^2} \sin y \right\}$$

$$\underline{4} \qquad \qquad = \frac{2}{\pi} \int_0^\infty \left[\frac{\sin \alpha}{\alpha \sinh \alpha \pi} \sinh \alpha y - \frac{1}{1 + \alpha^2} \sin y \right] \cos \alpha x \, d\alpha$$