King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics (Math 260)

Code: C

Final Exam **Term 141** Tuesday, Jan 06, 2015
Building No. 10
Net Time Allowed: 180 minutes
07:00PM to 10:00PM

		25 05
Name:	ID:	

(SHOW ALL YOUR STEPS AND WORK)

PAR	Г-І		WR	ITTEN -	PART	
Q						Points
1			3.0	FIG. 10.		/15
2						/15
3					<i>b</i> 1.1. 1.	/15
4		-			CONTRACTOR NO	/15
5		0 100 0		10 Page 34 500 F		/15
6					A CATO A SECURIO	/15
3/3		7	Total			/90
PART	`-II			ICQ - PA	RT	k :
Q		Answers				Points
1	a	ь	c	d	e	/6
2	a	ъ	c	d	e	/6
3	a	ъ	С	d	e	/6
4	a	ь	С	d	е	/6
5	a	Ъ	, с	d	е	/6
6	a	b	c	d	е	/6
7	a	b	c	d	e	/6
8	a	b	c	d	е	/6
9	a	b	c	d	e	/6
10	a	b	C	d	e	/6
11	a	b	С	d	e	/6
12	a	ь	С	d	e	/6
13	a	b	c	d	е	/6
14	a	b	С	d	e	/6
15	a	b	С	d	е	/6
	/90					
<u> </u>	/180					

WRITTEN PART

Set up an appropriate form of a particular solution y_p of the following differential equations (Do not DETERMINE THE VALUES OF THE COEFFICIENTS):

$$y'' - y' - 2y = 6x + 6e^{-X}$$

Determine whether the matrix
$$A = \begin{bmatrix} 3 & -1 & -2 \\ 2 & 0 & -2 \\ 2 & -1 & -1 \end{bmatrix}$$
 is diagonalizable or not.

3) Let
$$x_{k+1}=A$$
 x_k , whe $A=\begin{bmatrix}1&2\\2&4\end{bmatrix}$ and $x_0=\begin{bmatrix}\frac1{5^9}\\\frac1{5^9}\end{bmatrix}$. Find x_{10}

Hint: the eigenvalues of A are 0 and 5.

Transform the differtial equation $y''' + 5y'' - 8y = 2e^t$ to an equivalent system of first-order differential equations and write the system in matrix form.

5) Find a general solution of the system

$$X' = \begin{bmatrix} 1 & 3 \\ -3 & 1 \end{bmatrix} X$$

6) Find a general solution of the system

$$Y' = AY$$
 where $A = \begin{bmatrix} 1 & -4 & 0 \\ 4 & 9 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ and $Y = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$

MCQ PART

- 1) Which of the following subsets of \mathcal{R}^3 is a subspace of \mathcal{R}^3
 - A) The set of all vectors (x, y, z) such that $x^2 = y^2$
 - B) The set of all vectors (x, y, z) such that $x + y z^2 = 0$
 - C) The set of all vectors (x, y, z) such that x + y = z + 1
 - D) The set of all vectors (x, y, z) such that x yz = 0
 - E) The set of all vectors (x, y, z) such that 3x + 4y = 5z

- 2) Let u = (1, 2, 3), v = (3, 0, 1), w = (-5, 8, 9) which one of the following statements is TRUE?
 - A) w is a linear combination of u and v.
 - B) $\{v, w\}$ spans \mathcal{R}^3
 - C) w is in the span of (1, 0, 0) and (0, 1, 0)
 - D) $\{u, w\}$ spans \mathcal{R}^3
 - E) $\{u, v\}$ is linearly dependent

3) Let $A = \begin{bmatrix} 1 & 5 & 1 \\ 0 & 2 & 1 \\ 2 & 5 & 0 \end{bmatrix}$. Then the element in the first row and first

column of A^{-1} is:

- A) 1
- B) 5
- C) 3
- D) -3
- E) -5

4) The Wronskian of the functions

 $f_1(x) = x$, $f_2(x) = x + x^2$, and $f_3(x) = 2x - x^2$ equals to:

- A) x
- B) -x
- C) 0
- D) +1
- E) -1

5) If $\begin{bmatrix} a & b & c \\ x & y & z \end{bmatrix}$ is the reduced row echelon form of $\begin{bmatrix} 5 & 2 & 18 \\ 4 & 1 & 12 \end{bmatrix}$,

then b + c =

- A) 1
- B) 7
- C) 6
- D) (
- E) 2

- 6) If the DE $(kxy^3 + cos y) dx + (3x^2 y^2 xsiny) dy = 0$ is exact, then k =
 - A) 1
 - B) 3
 - C) 2
 - D) 4
 - E) 6

7) If y_p is a particular solution of the IVP

$$y'' - 2y' - 3y = 0$$
, $y(0) = 0$, $y'(0) = -4$,

then $y_p(1) =$

- A)
- $e e^3$ $e^{-1} e^{-3}$ B)
- D)
- $e + e^3$ E)

- 8) If A and B are 2×2 matrices such that $\det A = 6$ and $\det B = 3$, then $det(2AB^{-1})$
 - A) 12
 - B) 24
 - 6 C)
 - D) 18
 - E) 8

- 9) Which of the following differntial equation has $y = c_1e^{3x} + c_2xe^{3x}$ as general solution?
 - A) xy' (1 + 3x)y = 0
 - B) y'' 6y' + 9y = 0
 - C) y'' 3y' + 6y = 0
 - D) y'' + 3y' + 9y = 0
 - E) y' 3y = 0

10) If $y = ae^{3x} + be^{-5x}$ is a solution of the IVP:

$$y'' + 2y' - 15y = 0$$
, $y(0) = 40$, $y'(0) = -16$

then a - b =

- **A**) 0
- B) 4
- C) 8
- D) 6
- E) 2

11) The Bernoulli DE $y' + \frac{1}{x}y = 3x^2y^3$ can be written as first order linear DE as follows:

A)
$$v' + \frac{2}{x}v = -6x^2$$

B)
$$v' + \frac{1}{2x}v = -\frac{3}{2}x^2v^{-3}$$

C)
$$v' - \frac{2}{x}v = -6x^2$$

D)
$$v' - \frac{2}{x}v = -\frac{3}{2}x^2v^{-3}$$

E)
$$v' - \frac{1}{2x}v = -\frac{3}{2}x^2v^{-3}$$

12) If
$$2y' \sqrt{x} = -e^y$$
 and $y(1) = 0$, then $y(e^2) = 0$

- A) B) 0 -1

- C) D) -2
- 2 E)

13) If
$$\frac{dy}{dx} = \frac{x}{\sqrt{x^2 + 16}}$$
 and $y(0) = 2$, then $y(3) = 2$

- A)
- B) 2
- D)
- E)

14) The value of y when x = 2 that satisfies the first order IVP

$$y' = 4 x^2 - \frac{y}{x}$$
, $y(1) = 5$

is equal to

- A) 0
- B) 7
- C) -5
- D) 10
- E) 3

15) Which of the following sets is a basis for \mathcal{R}^3

A)
$$\{(2, 1, -1), (1, 2, -1), (1, 1, 2), (1, 1, -2)\}$$

B)
$$\{(2,-1,1),(1,-2,1)\}$$

C)
$$\{(2, 1, 1), (4, 2, 2), (0, 1, 0)\}$$

D) $\{(2, 1, 1), (4, 1, 1), (6, 2, 2)\}$

D)
$$\{(2, 1, 1), (4, 1, 1), (6, 2, 2)\}$$

E)
$$\{(2, 1, 1), (1, 2, 1), (0, 0, 1)\}$$