King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics (Math 260)

Second Major Exam Term 141

Thursday, November 20, 2014

Net Time Allowed: 90 minutes

Name:	
ID:	
Section No:	
Instructor's Name:	

(Show all your steps and work)

Question #	Marks
1	10
	10
3 4	10
4	8
5	10
6	10
7	12
8	10
Total	/80

(1) (a) Find the inverse of the matrix
$$A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

[5 points]

(b) Use the answer in part (a) to find a
$$3X3$$
 matrix X such that

$$AX = C$$
, where $C = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 0 & 1 \\ 1 & -1 & 0 \end{bmatrix}$

$$2x_1 + 6x_2 + x_3 = 7$$

$$x_1 + 2x_2 - x_3 = -1$$

$$x_1 + 2x_2 - x_3 = -1$$

$$5x_1 + 7x_2 - 4x_3 = 9$$

(3) a) Determine whether or not the vectors (1,0,0,3), (0,1,-2,0) and (0,-1,1,1) are linearly independent. [5 points]

b) Express (if possible) the vector W = (2,3,4) as a linear combination of the vectors $V_1 = (1,2,0), V_2 = (0,2,3), V_3 = (1,2,1)$ [5 points]

(4) Find a second-order differential equation with constant coefficients whose general

solution is $y(x) = e^x \left(c_1 e^{x\sqrt{2}} + c_2^{-4} e^{-x\sqrt{2}} \right)$. [8 points]

(5) Determine whether or not W is a subspace of \mathbb{R}^3 if:

[5 points]

a) W is the set of all $(x, y, z) \in \mathbb{R}^3$ such that xy(z+1) = 0

b) W is the set of all $(x, y, z) \in \mathbb{R}^3$ such that 2x + 3y - 3z = 0

[5 points]

$$x_1 - 4x_2 - 3x_3 - 7x_4 = 0$$

$$2x_1 - x_2 + x_3 + 7x_4 = 0$$

$$x_1 + 2x_2 + 3x_3 + 11x_4 = 0$$

(7) a) Determine whether or not the solutions $y_1 = x$, $y_2 = x^{-2}$, $y_3 = x^{-2} \ln x$ of the differential equation $x^3 y''' + 6x^2 y'' + 4xy' - 4y = 0$ are linearly independent. [6 points]

b) Use part (a) to find a particular solution of the differential equation: [6 points] $x^3y''' + 6x^2y'' + 4xy' - 4y = 0 \text{ that satisfies the initial conditions}$ y(1) = 1, y'(1) = 5, y''(1) = -11

$$(D^2 + 4)(D^4 + 4D^3 + 8D^2 + 16D + 16)y = 0$$

knowing that $y = xe^{-2x}$ is a solution of the equation.