Question 1: Fill in the blanks

- 1. The power set P of the set $\{\phi\}$ is P =
- 2. The set $\{[n, n+1) : n \in Z\}$ is a partition of the well-known set:
- 3. $\bigcup_{k \in N} \left[0, \frac{k}{k+1}\right] =$
- 4. If $A = \{\pi\}$ and $B = \{0\}$, then $A \times B \times B \times A =$
- 5. For any statements P and Q, the negation of the implication $P \implies Q$ is
- 6. The least element, if exists, of the set $\bigcap_{n \in N} \left(-\frac{1}{n}, 1\right]$
- 7. A function f is injective (one to one) if
- 8. An example of a bijection $f: R \to (0, 1)$ is f(x) =
- 9. The set $Z_5 =$
- 10. A binary operation * on a set A is

Question 2: Let R be an equivalence relation on a nonempty set A. Show that for every $a, b \in A$, if aRb, then [a] = [b].

Question 3: Let $a \in Z$ and $n \in N$ with $n \ge 2$. Use a direct proof to show that

$$a \equiv n \pmod{n} \implies a \equiv 0 \pmod{n}$$

Question 4: Prove by contradiction that there do not exist positive intergers m and n such that $m^2 - n^2 = 1$.

Question 5: Let m be a fixed integer. Show that the set

 $A = \{x \in Z : x \ge m\}$

is denumerable by using a bijection.

Question 6: Let $\{x_i\}_{i \in N}$ be a sequence of real numbers. Use mathematical induction to prove that

 $|\Sigma_{i=1}^n x_i| \le \Sigma_{i=1}^n |x_i|, \quad \forall \ n \ge 2$

Question 7: Let $A = R - \{0\}$, and * be the usual multiplication, that is a binary operation on A. Prove/Disprove that the algebraic structure (A, *) is an abelian group.