King Fahd University of Petroleum and Minerals
Department of Mathematics and Statistics

MATH 202 - Final Exam - Term 141

Duration: 180 minutes
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Name: : | i ID Number:

Section Number: Serial Number:

Class Time: Instructor’s Name:

Instructions:

1. Calculators and Mobiles are not. allowed.
2. Write neatly and eligibly. You may lose points for messy work.
3. Show all your work. No points for answers without justification.

4. Make sure that you have 12 pages of problems (Total of 12 Problems)

Page Points | Maximum
Number Points
1 12
2 14
3 12
4 12
5 10
6 14
7 14
8 10
9 9
10 11
11 10
12 12
Total 140
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4. Given a Caucy-Euler equation

2y — Ay + 6y = In o2 (1)

a) (4 points)Use a suitable substitution to transform equation (
tion with constant coefficients.

I) into an equa-

D K v

b) (8 points )Use the new equation obtained in (a) to find the general solution
of equation (I).
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(10 points) If X, = i e

ot

which corresponds to the eigenvalue A
linearly independent solution.
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6. (14 points) Explain why @ = 0 is an ordinary point of the equation
y" =y —y = 0. Then find two linearly independent power seri
solutions of the given equation about » — (.
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(14 points) Find the first four terms of the series solution of the equation
2%y — 3y + (3 + x)y = 0 which corresponds to the smaller indicial root
of the singularity @ = 0.
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8. a) (5 points) Determine a linear homogeneous differential equation with the

least order and with constant coefficients and having the general solution

b) (5 points) Classify each singular point of the equation
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equation

9. a) (5 points)Find an integrating factor to make the differential

y(102 + 3y + 5) da + (5 + 3y) dy = 0

quation)

exact. (Do not solve the e

b) (4 points) Given that the vectors X, — 1 je™, 1
! 1

2

and Xy = | 1 are the solutions of a system X7 =

et
solutions on the

1
Determine whether these vectors form a fundamental set of
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10. (11 points) Show that the equation (1 + y?)dar — (22%y + vy)dy = 0 is of
Bernoulli’s type. Then find its general solution.
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11. (10 points) Given that y = cj2 + cyu(x)x is the general solution of the equation

2y w2y (e F 2y =0, >0

Find w(x).
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12. (12 points) Solve y” — 4y + 4y = (& + 1)e*™ by using variation of parameters.
(other methods of solutions will not be accepted).
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