King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics

MATH 202 - Final Exam - Term 141

Duration: 180 minutes

Name:	ID Number:	
Section Number:	Serial Number:	
Class Time:	Instructor's Name:	
Instructions:		
1. Calculators and Mobiles are not allowed.		
2. Write neatly and eligibly. You may lose points for messy work.		
3. Show all your work. No points for answers without justification.		
4. Make sure that you have 12 pages of problems (Total of 12 Problems)		

Page	Points	Maximum
Number		Points
1		12
2		14
3		12
4		12
5		10
6		14
7		14
8		10
9		9
10		11
11		10
12		12
Total		140

1. (12 points) Given $\lambda = 2 + i\sqrt{3}$ is an eigenvalue of the matrix $A = \begin{pmatrix} 3 & 2 \\ -2 & 1 \end{pmatrix}$. Find the general solution of the homogeneous linear system, $V_1 = 4V_2$

Find the general solution of the homogeneous linear system
$$X' = AX$$

$$(1-i\sqrt{3})k_1+2k_2=0$$
 $\Rightarrow k_1=\frac{1}{2}(1-i\sqrt{3})k_1$
 $-2k_1+(-1-i\sqrt{3})k_2=0$

$$\Rightarrow B = \begin{bmatrix} -i & -i & -i \\ -i & -i & -i \end{bmatrix} = \begin{bmatrix} -i & -i \\ -i \end{bmatrix} = \begin{bmatrix} -i & -i \\ -i \end{bmatrix}$$

$$X = (B \cos \beta t - B \cos \beta t - B \sin \beta t) e^{2t}$$

$$= (C^{2}) \cos \beta 3t - (\cos \beta 3t - B \cos \beta t) e^{2t}$$

$$= (C^{2}) \cos \beta 3t - (\cos \beta 3t - B \cos \beta t) e^{2t}$$

$$X_{2} = (B_{2} \cos \beta t + B_{3} \sin \beta t) e^{\lambda t}$$

$$= ((-\sqrt{3}) \cos 5 t + (-2) \sin 5 t) e^{2t} (2\beta t)$$

$$= ((-\sqrt{3}) \cos 5 t + (-2) \sin 5 t) e^{2t} (2\beta t)$$

2. (14 points) Given $X_c = c_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^t + c_2 \begin{pmatrix} 1 \\ 3 \end{pmatrix} e^{-t}$ is the complementary function of the nonhomogeneous system $X' = AX + \begin{pmatrix} 0 \\ 4 \end{pmatrix} t$. Use variation of parameters to find a particular solution X_p .

$$\underline{\underline{J}}(t) = \begin{pmatrix} e^{t} & e^{t} \\ e^{t} & e^{t} \end{pmatrix} \underbrace{\begin{bmatrix} e^{t} \\ e^{t} \\ e^{t} \end{bmatrix}}_{\Rightarrow |\underline{\underline{J}}(t)| = 3 - 1 = 2 \neq 0}$$

$$\frac{1}{2}(t) = \frac{1}{2} \begin{pmatrix} 3e^{t} & -e^{t} \\ -e^{t} & e^{t} \end{pmatrix} = \begin{pmatrix} 3e^{t} & -\frac{1}{2}e^{t} \\ -\frac{1}{2}e^{t} & \frac{1}{2}e^{t} \end{pmatrix}$$

$$\frac{1}{2}(t) = \frac{1}{2} \begin{pmatrix} 3e^{t} & -\frac{1}{2}e^{t} \\ -\frac{1}{2}e^{t} & \frac{1}{2}e^{t} \end{pmatrix} = \begin{pmatrix} 3e^{t} & -\frac{1}{2}e^{t} \\ -\frac{1}{2}e^{t} & \frac{1}{2}e^{t} \end{pmatrix}$$

$$\frac{1}{2}(t) = \frac{1}{2} \begin{pmatrix} 3e^{t} & -\frac{1}{2}e^{t} \\ -\frac{1}{2}e^{t} & \frac{1}{2}e^{t} \end{pmatrix} = \begin{pmatrix} 3e^{t} & -\frac{1}{2}e^{t} \\ -\frac{1}{2}e^{t} & \frac{1}{2}e^{t} \end{pmatrix}$$

$$\frac{1}{2}(t) = \frac{1}{2} \begin{pmatrix} 3e^{t} & -\frac{1}{2}e^{t} \\ -\frac{1}{2}e^{t} & \frac{1}{2}e^{t} \end{pmatrix} = \begin{pmatrix} 3e^{t} & -\frac{1}{2}e^{t} \\ -\frac{1}{2}e^{t} & \frac{1}{2}e^{t} \end{pmatrix}$$

$$\frac{1}{4}(t)F(t) = \begin{pmatrix} 3/2e^{t} & -\frac{1}{2}e^{t} \\ -\frac{1}{2}e^{t} & \frac{1}{2}e^{t} \end{pmatrix} \begin{pmatrix} 0 \\ 4 \end{pmatrix} + = \begin{pmatrix} -2te^{t} \\ 2te^{t} \end{pmatrix} \begin{pmatrix} 2pts \\ 2te^{t} \end{pmatrix}$$

We need to integrate -2 te +2 tet to get

$$\int_{2t}^{2t} e^{t} dt = 2te^{t} - 2e^{t}$$

$$\int_{2t}^{2t} e^{t} dt = 2te^{t} - 2e^{t}$$

$$\int_{2t}^{2t} e^{t} dt = 2te^{t} - 2e^{t}$$

$$2te^{t} - 2e^{t}$$

$$2te^{t} + 2e^{t}$$

$$\Rightarrow \int \overline{\Phi}(t) F(t) dt = \left(2te^{t} - 2e^{t}\right) \left(2te^{t} + 2e^{t}\right)$$

$$\Rightarrow \times_{p} = \underline{\Phi}(t) \int \overline{\Phi}(t) F(t) dt = \left(e^{t} + 3e^{t}\right) \left(2te^{t} - 2e^{t}\right)$$

$$= {2t+2+2t-2 \choose 2t+2+6t-6} = {4t \choose 8t-4}$$

$$= {2t+2+6t-6 \choose 2t+2+6t-6} = {8t-4 \choose 8t-4}$$

3. (12 points) Use matrix exponential to solve the initial-value problem

$$X' = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} X$$
 subject to $X(0) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.

$$A = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow A^2 = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow A^3 = \begin{pmatrix} 0 \\$$

$$A^{n} = \begin{pmatrix} 1 & 0 \\ 0 & 2^{n} \end{pmatrix}$$

$$e^{A \stackrel{t}{=}} I + A + \frac{1}{2} A^{2} + \frac{1}{3!} A^{3} +$$

$$= \left(\begin{array}{c} \frac{2}{5} & \frac{1}{5} \\ 0 & \frac{2}{5} & \frac{1}{5} \end{array} \right) = \left(\begin{array}{c} e^{\frac{1}{5}} & e^{\frac{1}{5}} \\ 0 & e^{\frac{1}{5}} & \frac{1}{5} \end{array} \right) = \left(\begin{array}{c} e^{\frac{1}{5}} & e^{\frac{1}{5}} \\ 0 & e^{\frac{1}{5}} & \frac{1}{5} \end{array} \right) = \left(\begin{array}{c} e^{\frac{1}{5}} & e^{\frac{1}{5}} \\ 0 & e^{\frac{1}{5}} & \frac{1}{5} \end{array} \right) = \left(\begin{array}{c} e^{\frac{1}{5}} & e^{\frac{1}{5}} \\ 0 & e^{\frac{1}{5}} & \frac{1}{5} \end{array} \right) = \left(\begin{array}{c} e^{\frac{1}{5}} & e^{\frac{1}{5}} \\ 0 & e^{\frac{1}{5}} & \frac{1}{5} \end{array} \right) = \left(\begin{array}{c} e^{\frac{1}{5}} & e^{\frac{1}{5}} \\ 0 & e^{\frac{1}{5}} & \frac{1}{5} \end{array} \right) = \left(\begin{array}{c} e^{\frac{1}{5}} & e^{\frac{1}{5}} \\ 0 & e^{\frac{1}{5}} & \frac{1}{5} \end{array} \right) = \left(\begin{array}{c} e^{\frac{1}{5}} & e^{\frac{1}{5}} \\ 0 & e^{\frac{1}{5}} & \frac{1}{5} \end{array} \right) = \left(\begin{array}{c} e^{\frac{1}{5}} & e^{\frac{1}{5}} \\ 0 & e^{\frac{1}{5}} & \frac{1}{5} \end{array} \right) = \left(\begin{array}{c} e^{\frac{1}{5}} & e^{\frac{1}{5}} \\ 0 & e^{\frac{1}{5}} & \frac{1}{5} \end{array} \right) = \left(\begin{array}{c} e^{\frac{1}{5}} & e^{\frac{1}{5}} \\ 0 & e^{\frac{1}{5}} & \frac{1}{5} \end{array} \right) = \left(\begin{array}{c} e^{\frac{1}{5}} & e^{\frac{1}{5}} \\ 0 & e^{\frac{1}{5}} & \frac{1}{5} \end{array} \right) = \left(\begin{array}{c} e^{\frac{1}{5}} & e^{\frac{1}{5}} \\ 0 & e^{\frac{1}{5}} & \frac{1}{5} \end{array} \right) = \left(\begin{array}{c} e^{\frac{1}{5}} & e^{\frac{1}{5}} \\ 0 & e^{\frac{1}{5}} & \frac{1}{5} \end{array} \right) = \left(\begin{array}{c} e^{\frac{1}{5}} & e^{\frac{1}{5}} \\ 0 & e^{\frac{1}{5}} & \frac{1}{5} \end{array} \right) = \left(\begin{array}{c} e^{\frac{1}{5}} & e^{\frac{1}{5}} \\ 0 & e^{\frac{1}{5}} & \frac{1}{5} \end{array} \right) = \left(\begin{array}{c} e^{\frac{1}{5}} & e^{\frac{1}{5}} \\ 0 & e^{\frac{1}{5}} & \frac{1}{5} \end{array} \right) = \left(\begin{array}{c} e^{\frac{1}{5}} & e^{\frac{1}{5}} \\ 0 & e^{\frac{1}{5}} & \frac{1}{5} \end{array} \right) = \left(\begin{array}{c} e^{\frac{1}{5}} & e^{\frac{1}{5}} \\ 0 & e^{\frac{1}{5}} & \frac{1}{5} \end{array} \right) = \left(\begin{array}{c} e^{\frac{1}{5}} & e^{\frac{1}{5}} \\ 0 & e^{\frac{1}{5}} & \frac{1}{5} \end{array} \right) = \left(\begin{array}{c} e^{\frac{1}{5}} & e^{\frac{1}{5}} \\ 0 & e^{\frac{1}{5}} & \frac{1}{5} \end{array} \right) = \left(\begin{array}{c} e^{\frac{1}{5}} & e^{\frac{1}{5}} \\ 0 & e^{\frac{1}{5}} & \frac{1}{5} \end{array} \right) = \left(\begin{array}{c} e^{\frac{1}{5}} & e^{\frac{1}{5}} \\ 0 & e^{\frac{1}{5}} & \frac{1}{5} \end{array} \right) = \left(\begin{array}{c} e^{\frac{1}{5}} & e^{\frac{1}{5}} \\ 0 & e^{\frac{1}{5}} & \frac{1}{5} \end{array} \right) = \left(\begin{array}{c} e^{\frac{1}{5}} & e^{\frac{1}{5}} \\ 0 & e^{\frac{1}{5}} & \frac{1}{5} \end{array} \right) = \left(\begin{array}{c} e^{\frac{1}{5}} & e^{\frac{1}{5}} \\ 0 & e^{\frac{1}{5}} & \frac{1}{5} \end{array} \right) = \left(\begin{array}{c} e^{\frac{1}{5}} & e^{\frac{1}{5}} \\ 0 & e^{\frac{1}{5}} & \frac{1}{5} \end{array} \right) = \left(\begin{array}{c} e^{\frac{1}{5}} & e^{\frac{1}{5}} \\ 0 & e^{\frac{1}{5}} & \frac{1}{5} \end{array} \right) = \left(\begin{array}{c} e^{\frac{1}{5}} & e^{\frac{1}{5}} \\ 0 & e^{\frac{1}{5}} &$$

Soln
$$X = e^{At} G = (e^{t} \circ e^{2t}) (c_1) = (c_1 e^{2t}) (c_2)$$

$$X(G) = \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \Rightarrow C_1 = 1 \text{ and } C_2 = 0 \Rightarrow X = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

4. Given a Caucy-Euler equation

$$x^2y'' - 4xy' + 6y = \ln x^2 \qquad (I)$$

a) (4 points)Use a suitable substitution to transform equation (I) into an equation with constant coefficients.

Let
$$x = e^{\frac{1}{3}} = \lim_{x \to \infty} x \Rightarrow \frac{dy}{dx} = \lim_{x \to \infty} \frac{dy}{$$

- > dy = 5 & + 6y = 2 t
 - b) (8 points)Use the new equation obtained in (a) to find the general solution of equation (I).

$$f_{0}$$
 J_{p} : $J_{p} = A + B + \frac{1}{2}$ $\frac{1}{2}$ \frac

5. (10 points) If $X_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{2t}$ is a solution of the system $X' = \begin{pmatrix} -1 & 3 \\ -3 & 5 \end{pmatrix} X$ which corresponds to the eigenvalue $\lambda = 2$ of multiplicity 2. Find a second linearly independent solution.

For P, we need to solve
$$\begin{pmatrix} -3 & 3 \\ -3 & 3 \end{pmatrix} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{2} \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Math 202, Final Exam, Term 141

Page 6 of 12

6. (14 points) Explain why x = 0 is an ordinary point of the equation y'' - xy' - y = 0. Then find two linearly independent power series solutions of the given equation about x = 0.

$$X = 0$$
 is an ordinary point since the coefficients (1pt)
 $Q_{1}(x) = -X$ and $Q_{2}(x) = -1$ are analytic at $X = 0$
 $Q_{2}(x) = -\frac{1}{2} =$

Solar
$$y = \sum_{n=2}^{\infty} c_n x^n \Rightarrow y' = \sum_{n=2}^{\infty} n c_n x^{n-2}$$
 $(2pt)$

$$y'' - xy' - y = \sum_{n=2}^{\infty} x(n-1) C_n x' - \sum_{n=1}^{\infty} x C_n x' - \sum_{n=2}^{\infty} x C_n x' -$$

$$= \sum_{k=0}^{\infty} (k+2)(k+1) C_{k+2} \times - \sum_{k=1}^{\infty} k C_{k} \times - \sum_{k=0}^{\infty} C_{k} \times k$$

$$= \sum_{k=0}^{\infty} (k+2)(k+1) C_{k+2} \times - \sum_{k=0}^{\infty} k C_{k} \times - \sum_{k=0}^{\infty} C_{k} \times k$$

$$= (2C_{2} - C_{0}) + \sum_{k=1}^{\infty} ((k+2)(k+1) C_{k+2} - (k+1) C_{k}) \times = 0$$

$$= (2c_2 - c_0) + 2c_1$$

$$= (2c_2 - c_0) + 2c_2$$

$$= c_1 + c_2$$

$$= c_2 + c_3$$

$$= c_4 + c_4$$

$$= c_4 + c_5$$

$$= c_4 + c_5$$

$$= c_4 + c_5$$

$$= c_6 + c_6$$

$$= c_6 +$$

$$\Rightarrow \zeta = \frac{1}{2} c_{0} \text{ and } k+2 k+2 k$$

$$k=2 \Rightarrow c_{y} = \frac{1}{4} c_{0}$$

$$k=3 \Rightarrow \zeta = \frac{1}{3} c_{1}$$

$$k=3 \Rightarrow 5 = 53 = 3.5$$
 $k=5 \Rightarrow 5 = 53 = 3.5$
 $k=6 \Rightarrow 8 = 86 = 2.4.68$
 (2)

$$y = \sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + c_4 x^4 + c_5 x^4 + \cdots$$

$$= c_0 + c_1 x + \frac{1}{2} c_0 x^2 + \frac{1}{3} c_1 x^3 + \frac{1}{2 \cdot 4} c_0 x^4 + \frac{1}{3 \cdot 5} c_1 x^4 + \cdots$$

$$= c_0 + c_1 x + \frac{1}{2} c_0 x^2 + \frac{1}{3} c_1 x^3 + \frac{1}{2 \cdot 4} c_0 x^4 + \cdots$$

$$= c_0 + c_1 x + \frac{1}{2} c_0 x^2 + \frac{1}{3} c_1 x^3 + \frac{1}{2 \cdot 4} c_0 x^4 + \cdots$$

$$= c_0 + c_1 x + \frac{1}{2} c_0 x^2 + \frac{1}{3} c_1 x^3 + \frac{1}{2 \cdot 4} c_0 x^4 + \cdots$$

$$= c_0 + c_1 x + \frac{1}{2} c_0 x^2 + \frac{1}{3} c_1 x^3 + \frac{1}{2 \cdot 4} c_0 x^4 + \cdots$$

$$= c_0 + c_1 x + \frac{1}{2} c_0 x^2 + \frac{1}{3} c_1 x^3 + \frac{1}{2 \cdot 4} c_0 x^4 + \cdots$$

$$= c_0 + c_1 x + \frac{1}{2} c_0 x^2 + \frac{1}{3} c_1 x^3 + \frac{1}{2 \cdot 4} c_0 x^4 + \cdots$$

$$= c_0 + c_1 x + \frac{1}{2} c_0 x^2 + \frac{1}{3} c_1 x^3 + \frac{1}{2 \cdot 4} c_0 x^4 + \cdots$$

$$= c_0 + c_1 x + \frac{1}{2} c_0 x^2 + \frac{1}{3} c_1 x^4 + \frac{1}{2} c_0 x^4 + \cdots$$

$$= c_0 + c_1 x + \frac{1}{2} c_0 x^2 + \frac{1}{3} c_1 x^4 + \cdots$$

$$= c_0 + c_1 x + \frac{1}{2} c_0 x^2 + \frac{1}{3} c_1 x^4 + \cdots$$

$$= c_0 + c_1 x + \frac{1}{2} c_0 x^2 + \frac{1}{3} c_1 x^4 + \cdots$$

$$= c_0 + c_1 x + \frac{1}{2} c_0 x^2 + \frac{1}{3} c_1 x^4 + \cdots$$

$$= c_0 + c_1 x + \frac{1}{2} c_0 x^2 + \frac{1}{3} c_1 x^4 + \cdots$$

$$= c_0 + c_1 x + \frac{1}{2} c_0 x^2 + \frac{1}{3} c_1 x^4 + \cdots$$

$$= c_0 + c_1 x + \frac{1}{2} c_0 x^2 + \frac{1}{3} c_1 x^4 + \cdots$$

$$= c_0 + c_1 x + \frac{1}{2} c_0 x^2 + \frac{1}{3} c_1 x^4 + \cdots$$

$$= c_0 + c_1 x + \frac{1}{2} c_0 x^2 + \frac{1}{3} c_1 x^4 + \cdots$$

$$= c_0 + c_1 x + \frac{1}{3} c_1 x^4 + \cdots$$

$$= c_0 + c_1 x + \frac{1}{3} c_1 x^4 + \cdots$$

$$= c_0 + c_1 x + \frac{1}{3} c_1 x^4 + \cdots$$

$$= c_0 + c_1 x + c_1 x + c_1 x + \cdots$$

$$= c_0 + c_1 x + c_1 x + c_1 x + \cdots$$

$$= c_0 + c_1 x + c_1 x + c_1 x + \cdots$$

$$= c_0 + c_1 x + c_1 x + c_1 x + \cdots$$

$$= c_0 + c_1 x + c_1 x + c_1 x + \cdots$$

$$= c_0 + c_1 x + c_1 x + c_1 x + \cdots$$

$$= c_0 + c_1 x + c_1 x + c_1 x + \cdots$$

$$= c_0 + c_1 x + c_1 x + c_1 x + \cdots$$

$$= c_0 + c_1 x + c_1 x + c_1 x + \cdots$$

$$= c_0 + c_1 x + c_1 x + c_1 x + c_1 x + \cdots$$

$$= c_0 + c_1 x + c_1 x + c_1 x + c_1 x + \cdots$$

$$= c_0 + c_1 x + c_1 x + c_1 x + c_1 x + \cdots$$

$$= c_0 + c_$$

$$= \xi \left(1 + \frac{1}{2} \times + \frac{1}{2 \cdot 4} \times + \frac{1}{2 \cdot 4 \cdot 6} \times + \frac{1}{2$$

$$4y_1 = X + \frac{1}{3}x^3 + \frac{1}{3.5}x^5 + \frac{1}{3.5.7}x^7 + \dots = X + \frac{2}{3.5.7} = X +$$

7. (14 points) Find the first four terms of the series solution of the equation $2x^2y'' - 3xy' + (3+x)y = 0$ which corresponds to the smaller indicial root of the singularity x = 0.

of the singularity x = 0. $y = \sum_{n=0}^{\infty} c_n x^{n+r}$ $y' = \sum_{n=0}^{\infty} c_n (n+r) x^{n+r-1}$ $y'' = \sum_{n=0}^{\infty} c_n (n+r) x^{n+r-1}$ $y'' = \sum_{n=0}^{\infty} c_n (n+r) x^{n+r-1}$ (2p)

 $\Rightarrow 2x^{2}y'' - 3xy' + (3+x)y = \sum_{n=0}^{\infty} 2c_{n}(n+r)(n+r-1)x' - \sum_{n=0}^{\infty} 3c_{n}(n+r)x' + \sum_{n=0}^{\infty} 3c_{n}x'' + \sum_{n=0}^{\infty} 2c_{n}x'' + \sum_{n=0}^{\infty} 3c_{n}x'' + \sum_{n=0}$

 $= \times \left[\sum_{n=0}^{\infty} (2c_n(n+r)(n+r-1) - 3c_n(n+r) + 3c_n) \times + \sum_{n=0}^{\infty} c_n \times \right]$

 $= \times \left[\sum_{k=0}^{\infty} (2q(k+r)(k+r-1) - 3q(k+r) + 3q) \times + \sum_{k=1}^{\infty} q(k+r) \right]$

 $= x \left[(2c_0(r)(r-1) - 3c_0(r) + 3c_0) + \sum_{k=1}^{\infty} \left[2c_k(k+r)(k+r-1) - 3c_k(k+r) + 3c_k + c_{k-1} \right] \times \left[2pt_3 + \sum_{k=1}^{\infty} \left(2pt_3 + \sum_{k=1}^{\infty} (2pt_3) + \sum_{k=1}^{\infty} \left(2pt_3 + \sum_{k=1}^{\infty} (2pt_3) + \sum_{k=1}^{\infty} \left(2pt_3 + \sum_{k=1}^{\infty} (2pt_3) + \sum_{k=1}^{$

7 (crer-1)-3.73) 8
Yecurrence relation 29 (k+1) k-39 (k+1) +39 k+ 8 =0 k=1,23,---

 $\Rightarrow Q = \frac{1}{k(2k-1)} C_{k-1}, k=1,2,3,\dots$ (2pts

 $k=1 \Rightarrow 0 = \frac{1}{100} = \frac{1}{1$

S==1 C== ---

 $\frac{3}{50\ln y} = \frac{9}{50} c_n x^{n+1} = c_0 x + c_1 x^2 + c_2 x^3 + c_3 x^4 + \cdots$

 $= 6 \times -6 \times^{2} + 6 \times \times^{3} - \frac{1}{90} \times \times^{4} + \cdots$

 $= 8 \left(x - x + \frac{1}{6} x^{3} - \frac{1}{9} x^{3} + \cdots \right)$

8. a) (5 points) Determine a linear homogeneous differential equation with the least order and with constant coefficients and having the general solution

b) (5 points) Classify each singular point of the equation

as regular or irregular.

Singular points:
$$\times (x-1)^3 = 0 \implies x = 0$$
, $y = 0$

Singular points: $\times (x-1)^3 = 0 \implies x = 0$, $y = 0$

P(x) = $\frac{1}{x(x-1)}$

of $y = 0$
 $y = 0$

is a regular singular point (Ipt x=1) is an irregular singular point (Ipt y=1).

Math 202, Final Exam, Term 141

Page 9 of 12

9. a) (5 points)Find an integrating factor to make the differential equation

$$y(10x + 3y + 5) dx + (5x + 3y) dy = 0$$

exact. (Do not solve the equation)

$$M(x,y) = y(10x+3y+5) \Rightarrow My = 10x+6y+5$$

$$N(x,y) = 5x+3y \Rightarrow N_x = 5$$

$$My - Nx = 10x+6y = 2 \text{ (function of } x \text{ only)}$$

$$N = 5x+3y$$

$$N = 5$$

b) (4 **points**) Given that the vectors
$$X_1 = \begin{pmatrix} 6 \\ -1 \\ -5 \end{pmatrix} e^{-t}, X_2 = \begin{pmatrix} -3 \\ 1 \\ 1 \end{pmatrix} e^{-2t},$$
 and $X_3 = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} e^{3t}$ are the solutions of a system $X' = AX$.

Determine whether these vectors form a fundamental set of solutions on the interval $(-\infty, \infty)$.

10. (11 points) Show that the equation $(1 + y^2) dx - (2x^3y + xy) dy = 0$ is of Bernoulli's type. Then find its general solution.

$$\Rightarrow (1+y^2) \frac{dx}{dy} - y = 2y x^3$$

$$\Rightarrow \frac{dx}{dy} - \frac{y}{1+y^2} \times = \frac{2y}{1+y^2} x^3 \quad \text{Bernoulli:} \quad 2pt$$

$$\Rightarrow \frac{dx}{dy} - \frac{y}{1+y^2} \times = \frac{1}{1+y^2} \times \frac{dx}{dy} = -\frac{1}{2}u \frac{du}{dy} \frac{2pt}{2pt}$$

$$= 3 \Rightarrow u = x^2 \Rightarrow x = u \Rightarrow \frac{dx}{dy} = -\frac{1}{2}u \frac{du}{dy} \frac{2pt}{2pt}$$

$$= \frac{3h^2}{2y} \frac{du}{dy} - \frac{y}{1+y^2} \frac{u^2}{1+y^2} = \frac{2y}{1+y^2} \frac{3h^2}{2pt}$$

$$= \frac{3h^2}{1+y^2} \frac{du}{dy} - \frac{y}{1+y^2} \frac{u^2}{1+y^2} = \frac{2y}{1+y^2} \frac{3h^2}{1+y^2}$$

$$= \frac{3h^2}{1+y^2} \frac{du}{dy} - \frac{3h^2}{1+y^2} \frac{du}{dy} = \frac{2h^2}{1+y^2} \frac{3h^2}{1+y^2} \frac{du}{dy} = \frac{2h^2}{1+y^2} \frac{3h^2}{1+y^2} \frac{3h^2}{1+y^2} \frac{du}{dy} = \frac{2h^2}{1+y^2} \frac{3h^2}{1+y^2} \frac{du}{dy} = \frac{2h^2}{1+y^2} \frac{3h^2}{1+y^2} \frac{du}{dy} = \frac{2h^2}{1+y^2} \frac{3h^2}{1+y^2} \frac{du}{dy} = \frac{2h^2}{1+y^2} \frac{3h^2}{1+y^2} \frac{3h^2}{$$

$$= \int_{-1}^{1} dy \left(\frac{1+y^2}{y^2} \right) u = \int_{-1}^{1} -\frac{1}{y^2} dy = -\frac{1}{2} y^2 + C$$

$$= \int_{-1}^{1} (1+y^2) u = \int_{-1}^{1} -\frac{1}{y^2} dy = -\frac{1}{2} y^2 + C$$

$$\Rightarrow u = \frac{-2y^2}{1+y^2} + \frac{c}{1+y^2}$$

$$\Rightarrow x^2 = -2y^2 + C$$

Math 202, Final Exam, Term 141

Page 11 of 12

11. (10 points) Given that $y = c_1 x + c_2 u(x)x$ is the general solution of the equation

$$x^{2}y'' - x(x+2)y' + (x+2)y = 0, \quad x > 0$$

Find
$$u(x)$$
.

$$u(x) = \int \frac{e}{y^2(x)} dx$$

where $y_i(x) = x$

where
$$y_i(x) = x$$

$$P(x) = \frac{x^2}{x^2} - \left(1 + \frac{x}{x}\right)$$

$$-\int P(x)dx \int (1+\frac{2}{x})dx$$

$$= e \qquad = x^{2}e^{x}$$

$$=\int u(x) = \int \frac{e^{x} \cdot x^{2}}{y^{2}(x)} dx = \int \frac{e^{x} \cdot x^{2}}{x^{2}} dx = e^{x}$$

12. (12 points) Solve $y'' - 4y' + 4y = (x+1)e^{2x}$ by using variation of parameters. (other methods of solutions will not be accepted).

First we solve
$$y'' - Yy + Yy = 0$$
 to get

 $m^2 - Ym + Y = 0 \Rightarrow m = 2, 2 \Rightarrow y = c, e^2 + c, x e^2 x$
 $W(x_1, x_2) = \begin{vmatrix} e^{2x} & xe^{2x} \\ 2e^{2x} & e^{2x} \\ 2e^{2x} & e^{2x} \end{vmatrix} = e^{x} + 0$
 $2x + 2xe^{2x}$
 $2x + 2xe^{2x}$

$$\Rightarrow u' = \frac{w'}{w} = \frac{|(x+1)e^{3x} + e^{3x}|}{e^{4x}} = \frac{-x(x+1)e^{4x}}{e^{4x}}$$

$$= -x(x+1) \xrightarrow{2} 4 \xrightarrow{3} \xrightarrow{3} \xrightarrow{3} (3)$$

$$= -x(x+1) \xrightarrow{2} 4 \xrightarrow{3} \xrightarrow{3} \xrightarrow{3} (3)$$

$$= -x(x+1) \xrightarrow{2} 4 \xrightarrow{3} \xrightarrow{3} \xrightarrow{3} (3)$$

$$= -x(x+1) \xrightarrow{2} 4 \xrightarrow{3} \xrightarrow{3} (3)$$

$$= -x(x+1) \xrightarrow{2} 4 \xrightarrow{3} (3)$$

$$\Rightarrow y_{1} = \frac{2}{2} + x$$

$$\Rightarrow y_{2} = (-\frac{1}{3} + \frac{1}{2})x^{2} = (-\frac{1}{3} - \frac{1}{2})e^{2x} + (\frac{1}{2} + x)xe^{2x}$$

$$= (-\frac{1}{3} + \frac{1}{2})x^{2}e^{2x} + (1 - \frac{1}{2})x^{2}e^{2x} = \frac{1}{6}x^{2}e^{2x} + \frac{1}{2}x^{2}e^{2x}$$

$$= (-\frac{1}{3} + \frac{1}{2})x^{2}e^{2x} + (1 - \frac{1}{2})x^{2}e^{2x} = \frac{1}{6}x^{2}e^{2x} + \frac{1}{2}x^{2}e^{2x}$$
(Pt