KFUPM	Term (141)	Name	_Serial#	
MATH 201	Quiz # 5(a)	ID#	Section 27	
Time: 20 Min	nutes		Marks :	/8

1) Suppose $I = \iint_R (x + y) dA$ where *R* is the region bounded by the circle $x^2 + y^2 = 2y$. Convert *I* to polar coordinates (**Do not evaluate the resulting integral**).

2) Evaluate $\iiint_E 2xdV$ where $E = \{(x, y, z): 0 \le y \le 2, 0 \le x \le \sqrt{4 - y^2}, 0 \le z \le y\}.$

KFUPM	Term (141)	Name	_Serial#	
MATH 201	Quiz # 5(b)	ID#	Section 27	
Time: 20 Min	nutes		Marks:	/8

1) Use polar coordinates to find volume of the solid bounded by the cylinder $x^2 + y^2 = 4$ and the planes z = 0 and y + z = 3.

2) Set up a triple integral using dzdydx as order of integration to find volume of the solid bounded by the surface $y = x^2$ and planes y + z = 9 and z = 0.