KFUPM, DEPARTMENT OF MATHEMATICS AND STATISTICS

MATH 101: QUIZ 2, SEMESTER (141), OCTOBER 14, 2014

Name :

ID : Section : 30

Exercise	Points
1	2
2	2
3	2
4	2
5	2
Total	10

Exercise 1. Let $f(x) = \begin{cases} x^3 \sin(\frac{1}{x}) & \text{if } x < 0\\ \sqrt{x} & \text{if } x \ge 0 \end{cases}$ Find $\lim_{x \to 0^+} f(x)$, $\lim_{x \to 0^-} f(x)$. Does $\lim_{x \to 0} f(x)$ exist?

Exercise 2. Find the following limits

(a) $\lim_{x \longrightarrow 0} [(\sin x)(\cot(2x))]$

(b)
$$\lim_{x \to 0} \frac{\tan(3x)}{\sin(8x)}$$

(c)
$$\lim_{x \to 0} \frac{\sin(3x)}{4x}$$

Exercise 3. Define g(3) in a way that extends $g(x) = \frac{x^2 - 9}{x^2 - 5x + 6}$ to be continuous at 3.

Exercise 4. For what values of a is

$$f(x) = \begin{cases} x^2 - a^2 & \text{if } x < 3\\ \\ \frac{8}{3}ax & \text{if } x \ge 3 \end{cases}$$

continuous at every x?

_

Exercise 5. Use the intermediate value theorem to show that the graphs of the functions $f(x) = x^2$ and $g(x) = e^x$ intersect at a point whose x-coordinate lies in the interval [-1, 0].

7