1. If
$$f(x) = \frac{2^x}{x^2}$$
, then $f'(2) =$

- a) $-1 + \ln 2$
- b) $4 \ln 2$
- c) $2 + \ln 2$
- d) $1 + \ln 2$
- e) 2 ln 2

2. If $x_1 = 1$ is an initial approximation of one of the zeros of the function $f(x) = 2x^4 - x^2$, using Newton's method to find the next approximation x_2 we get

- a) $\frac{5}{6}$
- b) $\frac{1}{6}$
- c) $\frac{2}{3}$
- d) $\frac{1}{2}$
- e) $\frac{1}{3}$

- 3. The equation of the oblique asymptote of the graph of $f(x) = \frac{3x^2 4}{x + 1}$ is
 - a) y = 3x 3
 - b) y = 3x 2
 - c) y = 3x + 1
 - d) y = 3x
 - e) y = 3x + 4
- 4. The value of c that satisfies the conclusion of the **Mean Value Theorem** for the function $f(x) = 2x^2 + 1$ on the interval [1, 3] is
 - a) c = 2

 - b) $c = \frac{3}{2}$ c) $c = \frac{5}{2}$ d) $c = \frac{5}{4}$ e) $c = \frac{9}{4}$

- 5. The sum of the absolute maximum and absolute minimum values of $f(x) = \cos^2 x - \cos x$ in $[-\pi/2, \pi]$ is
 - a) $\frac{7}{4}$
 - b) 2
 - c) $\frac{9}{4}$
- 6. The function $f(x) = \begin{cases} \frac{x^2 16}{x^2 3x 4} & \text{if } x \neq 4 \\ k & \text{if } x = 4 \end{cases}$ is continuous at x = 4, then k is equal to

 - c) $\frac{-1}{5}$ d) $\frac{-2}{5}$ e) $\frac{-9}{5}$

7. Let
$$\frac{ds}{dt} = 1 + \cos t$$
, $s(0) = 4$. Then $s\left(\frac{\pi}{2}\right) =$

- a) $5 + \frac{\pi}{2}$
- b) $-1 + \frac{\pi}{2}$
- c) $2 + \pi$
- d) 2π
- e) 0

8. If
$$f(x) = 2\cos(2\tan^{-1}\sqrt{x})$$
, then $f'(1) =$

- a) -1
- b) 1
- c) $\frac{\pi}{2}$
- d) $-\frac{1}{2}$
- e) $\frac{\pi}{4}$

9. Let $f(x) = x \ln x$. Then the graph of f(x) is

- a) increasing on $\left(\frac{1}{e}, \infty\right)$ and decreasing on $\left(0, \frac{1}{e}\right)$
- b) increasing on $(0, \infty)$
- c) decreasing on $(0, \infty)$
- d) increasing on $\left(0, \frac{1}{e}\right)$ and decreasing on $\left(\frac{1}{e}, \infty\right)$
- e) increasing on (e, ∞) and decreasing on (0, e)

10.
$$\lim_{x \to 0} \frac{\sin(\sin^{-1} x)}{\frac{\pi}{2} - \cos^{-1} x} =$$

- a) 1
- b) 0
- c) ∞
- d) $\frac{\pi}{2}$
- e) π

- 11. The length L of a rectangle is decreasing at the rate of $2 \, cm/sec$ while the width w is increasing at the rate of $2 \, cm/sec$. When L=12cm and w=5cm, then the area of the rectangle is increasing at a rate of $(\ln cm^2/sec)$
 - a) 14
 - b) 34
 - c) 24
 - d) 18
 - e) 30

12. The graph of
$$f(x) = \frac{8x+3}{|x|-1}$$
 has

- a) two horizontal and two vertical asymptotes
- b) one horizontal and one vertical asymptotes
- c) two horizontal and one vertical asymptotes
- d) two vertical and no horizontal asymptotes
- e) one vertical and no horizontal asymptotes.

13. Let
$$f(x) = \frac{3}{8}x^{8/3} - \frac{6}{5}x^{5/3} + \frac{3}{2}x^{2/3}$$
. If

C =the number of critical points of f(x)

m =the number of local minimum of f(x)

M = the number of local maximum of f(x)

then 2C + m - M =

- a) 5
- b) 4
- c) 3
- d) 0
- e) -1

14.
$$\lim_{x \to \infty} [x - \ln(1 + 2e^x)] =$$

- a) $-\ln 2$
- b) ∞
- c) 0
- d) $\ln 2$
- e) 1

15. If $\cos y + ye^x = x$, then $\frac{dy}{dx}$ is

- a) $\frac{1 ye^x}{e^x \sin y}$
- $b) \frac{1 + ye^x}{e^x \sin y}$
- c) $\frac{1 ye^x}{e^x + \sin y}$
- d) $\frac{3 ye^x}{e^x \sin y}$ e) $\frac{4 + ye^x}{e^x \sin y}$

16. If α is constant, then $\lim_{x\to\infty} \left(1-\frac{2\alpha}{x}\right)^x =$

- a) $e^{-2\alpha}$ b) $e^{2\alpha}$
- c) $e^{-\alpha}$
- d) e^{α}
- e) 0

17. If $f(x) = \log_3 \sqrt{\left(\frac{2x}{x^3 + 1}\right)^{\ln 3}}$, then f'(1) =

- a) $-\frac{1}{4}$
- b) $\frac{1}{2}$
- c) $-\frac{1}{3}$
- $d) \frac{5}{4}$
- e) ln 3

18. If (α, β) is the point of inflection of the curve $f(x) = \tan x - 4x$ for $x \in \left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$, then $2\alpha - \beta + 2$

- a) 2
- b) 0
- c) $\frac{\pi}{4}$
- $d) -\frac{\pi}{4}$
- e) 1π

19. If $y = (2 + \tan x)^x$, then y'(0) =

- a) ln 2
- b) $\frac{1}{2} + \ln 2$
- c) 2 ln 2
- d) 4
- e) 2

20. A rectangle has its base on the x-axis and its upper two vertices on the parabola $y = 12 - x^2$. The largest possible area of such rectangle is

- a) 32
- b) 30
- c) $18\sqrt{3}$
- d) $8\sqrt{3}$
- e) 16

21.
$$\lim_{n \to \infty} \sum_{k=1}^{n} \left(\frac{1}{n} - \frac{k^2}{n^3} \right) =$$

- a) $\frac{2}{3}$
- b) $\frac{1}{6}$
- c) $\frac{1}{3}$
- d) $\frac{5}{3}$
- e) $\frac{7}{6}$

22. Using the linearization of $f(x) = \sin x$ at $a = \frac{\pi}{4}$ to approximate $\sin(44^\circ)$, we get $\sin 44^\circ \approx \alpha + \beta \pi$, then $2\alpha - 360\beta =$

- a) $2\sqrt{2}$
- b) 0
- c) $\sqrt{2}$
- $d) -2\sqrt{2}$
- e) $-\sqrt{2}$

23. If $f(x) = x\sqrt{8-x^2}$, then which one of the following statements is False?

- a) The function is decreasing on (-2, 2)
- b) The domain of the function is $[-2\sqrt{2}, 2\sqrt{2}]$
- c) The function has an absolute minimum at x = -2
- d) The function has an absolute maximum at x = 2
- e) The function is increasing on (-2,2)

24. If the **average value** av(f) of $f(x) = \frac{1}{2} + \sin^2(\pi x)$ on the interval [0,2] is approximated by partitioning the interval into four subintervals of equal length and evaluating f at the subinterval midpoint, then $av(f) \approx$

- a) 1
- b) 2
- c) $\frac{3}{2}$
- d) 4
- e) $\frac{5}{2}$

- 25. The minimum vertical distance between the parabolas $y=x^2+1$ and $y=x-x^2$ is equal to

 - a) $\frac{7}{8}$ b) $\frac{3}{4}$ c) $\frac{5}{8}$ d) $\frac{1}{4}$

26.
$$\int (e^{2\ln x} + e^{x\ln 2}) \, dx =$$

- a) $\frac{x^3}{3} + \frac{2^x}{\ln 2} + C$
- b) $\frac{x^2}{\ln x} + \frac{2^{x+1}}{x+1} + C$
- c) $\frac{x^2}{4} + \frac{2^x}{\ln 2} + C$
- d) $\frac{x^3}{3} + 2^x + C$
- e) $2x + \frac{2^x}{\ln 2} + C$

27. Let $f(x) = x^2 - 4x - 5$ for x > 2. Then $(f^{-1})'(0) =$

- a) $\frac{1}{6}$
- b) $-\frac{1}{6}$
- c) $\frac{1}{3}$ d) $\frac{2}{3}$
- e) 0

28. If
$$f(x) = \begin{cases} C & \text{if } x = 0\\ Ae^x & \text{if } 0 < x < 1\\ \ln x + B & \text{if } 1 \le x \le 2 \end{cases}$$
 satisfies

the conditions of the Mean Value Theorem, then A+B-C=

- a) 1
- b) *e*

- e) 1 + e