- 1. The slope of the tangent line to the curve $y = x^3 - x^2$ at x = -1 is
 - (a) 5
 - (b) 1
 - (c) 0
 - (d) 2
 - (e) -4

2. An equation of the normal line to the curve $y = \frac{2}{(x-2)^3}$ at the point (3,2) is

- (a) 6y x = 9
- (b) y + 6x = 5
- (c) y = -6x + 8
- (d) x = 6y 7
- (e) 6y 3x = 11

3. If
$$y = \frac{e^x}{x}$$
, then y' is equal to

(a)
$$\frac{(x-1)e^x}{x^2}$$

(b)
$$\frac{e^x}{x^2}$$

(c) 0
(d)
$$e^x$$

(e)
$$\frac{x^2e^x - 1}{x^2}$$

- 4. At time t > 0, the position of a particle moving along the s-axis is $S(t) = t^3 6t^2$. The acceleration of the particle when the velocity is zero is
 - (a) 12
 - (b) 6
 - (c) 0
 - (d) 4
 - (e) 10

Math 101, Exam II, Term 141

5. If
$$f(x) = x^2 \cos x - 2x \sin x - 2 \cos x$$
, then $f'(\frac{3\pi}{2})$ is

(a) $\frac{9\pi^2}{4}$ (b) 0 (c) $\frac{-9\pi^2}{4}$ (d) $\frac{-3\pi}{2}$ (e) $\frac{3\pi}{2}$

6. If $y = u^2 - 1$ and $u = e^{2x} + \ln x$, then $\frac{dy}{dx}$ at x = 1 is equal to

- (a) $4e^4 + 2e^2$
- (b) $2e^4 + e^2$
- (c) $4e^4 2e^2$
- (d) $2e^4 e^2$
- (e) $e^4 + 4e^2$

Math 101, Exam II, Term 141

7. If
$$y = \left(1 + \frac{1}{x}\right)^3 + \left(1 - \frac{1}{x}\right)^3$$
, then $y' =$

(a)
$$\frac{-12}{x^3}$$

(b)
$$\frac{-9}{x}$$

(c)
$$\frac{-3}{x^2}$$

(d)
$$\frac{-6}{x^3}$$

(e)
$$\frac{3}{x^4}$$

8. Let
$$f(x) = \begin{cases} x-1 & \text{if } x < 0\\ \sin x & \text{if } x \ge 0 \end{cases}$$
, then $f'(0)$

- (a) Does not exist
- (b) is equal to 1
- (c) is equal to 0
- (d) is equal to -1
- (e) is equal to 2

- 9. Let $h(x) = 2g(x) + f(\sqrt{g(x)})$ and h'(-1) = 7, f'(3) = 18,g(-1) = 9, then g'(-1) is equal to
 - (a) $\frac{7}{5}$
 - (b) 2
 - (c) 0
 - (d) $\frac{1}{7}$
 - (e) 5

- 10. The slope of the tangent line to the graph of $x^2y + y^4 = 4 + 2x$ at the point (-1, 1) is equal to
 - (a) $\frac{4}{5}$
 - (b) -1
 - (c) 1
 - (d) 0
 - (e) $\frac{4}{3}$

- 11. Given y = x(x+1)(x+2), then by using logarithmic differentiation y' is equal to
 - (a) $3x^2 + 6x + 2$
 - (b) $3x^2 6x + 2$
 - (c) $3x^2 6x 2$
 - (d) $-3x^2 + 6x + 2$
 - (e) $-3x^2 6x + 2$

12. If
$$y = \ln(\ln x)$$
, then $(x \ln x)y'' + y' =$

(a)
$$\frac{-1}{x}$$

(b)
$$\frac{1}{x \ln x}$$

(c)
$$\frac{\ln x}{x}$$

(d)
$$0$$

(e)
$$\frac{-x}{1 + \ln x}$$

- 13. If the radius r of a circle is measured with a possible percentage error of $\pm 2\%$, then the estimated percentage error in calculating the area of the circle is
 - (a) $\pm 4\%$
 - (b) $\pm 2\pi\%$
 - (c) $\pm 2\%$
 - (d) $\pm \frac{\pi}{r}\%$

(e)
$$\pm \frac{4}{r}\%$$

14. The linearization L(x) of $f(x) = e^{x-1}$ at x = 1 is

- (a) L(x) = x
- (b) L(x) = -x
- (c) L(x) = x + 1
- (d) L(x) = 1 x
- (e) L(x) = 2x

15. Suppose that x and y are differentiable functions of t and are related by the equation $x^2y^3 = \frac{4}{27}$. If $\frac{dy}{dt} = \frac{1}{2}$, then the value of $\frac{dx}{dt}$ at x = 2 is

(a)
$$-\frac{9}{2}$$

(b) $\frac{-5}{2}$
(c) -1
(d) $\frac{9}{4}$

16. For
$$t > 0$$
, $\frac{d}{dt} \left[\sin^{-1} \left(\frac{t-4}{t+4} \right) \right] =$

(a)
$$\frac{2\sqrt{t}}{t(t+4)}$$

(b)
$$\frac{8\sqrt{t}}{t+4}$$

(c)
$$\frac{4\sqrt{t}}{t}$$

(d)
$$\frac{8}{1+\sqrt{t}}$$

(e)
$$(t+4)\sqrt{t}$$

17. If
$$f(x) = \ln(x^2 + 4) - x \tan^{-1}\left(\frac{x}{2}\right)$$
, then $f'(2) =$

(a)
$$\frac{-\pi}{4}$$

(b) $\frac{\pi}{4}$
(c) 0

(d) Does not exist

(e)
$$-1$$

18. If
$$y = (1 + \sqrt{x})^x$$
, then $y'(1) =$

(a)
$$\frac{1}{2} + 2 \ln 2$$

(b) $1 + 2 \ln 2$
(c) $1 + \ln 2$
(d) $\frac{1}{2} + \ln 2$
(e) $\frac{1}{4} + 2 \ln 2$

- 19. The coordinates of a particle in the *xy*-plane are differentiable functions of time *t* with $\frac{dx}{dt} = -1 \ m/sec$ and $\frac{dy}{dt} = -5 \ m/sec$. How fast is the particle's distance from the origin changing as it passes through the point (5, 12)
 - (a) -5(b) $\frac{2}{13}$ (c) $\frac{-3}{7}$ (d) $\frac{-5}{13}$ (e) 4

- 20. The equations of two lines through the origin tangent to the curve of $x^2 4x + y^2 + 2 = 0$ are given by
 - (a) y = x, y = -x
 - (b) y = 2x, y = -x
 - (c) y = x + 1, y = -x + 2
 - (d) y = 3x, y = 2x
 - (e) y = -2x, y = -x