KING FAHD UNIVERSITY OF PETROLEUM & MINERALS DEPARTMENT OF MATHEMATICAL SCIENCES DHAHRAN, SAUDI ARABIA

STAT 212: BUSINESS STATISTICS II

Semester 133 Second Major Exam Wednesday July 16, 2014 4:00 – 5:30 pm

Name:

ID #:

Serial #:

Question No	Full Marks	Marks Obtained
1	11	
2	16	
3	23	
Total	50	

Note: For each question: Clearly state your hypotheses, assumptions and your conclusions. Use 5% level of significance unless specified other wise in the problem.

Q1. (11 marks) A manufacturing company is interested in predicting the number of defects that will be produced each hour on the assembly line. The managers believe that there is a relationship between the defect rate and the production rate per hour. The managers believe that they can use production rate to predict the number of defects. The following data were collected for 10 randomly selected hours.

Defects (X)	20	30	10	20	30	25	30	20	10	40
Production rate (Y)	400	450	350	375	400	400	450	300	300	300

Given the following

$\sum x = 235$, $\sum y = 3725$, $\sum x^2 = 6325$, $\sum y^2 = 1418125$ and $\sum xy = 89000$.

a. Find the correlation coefficient between the two variables

b.	Is there a significant direct correlation between the two variables? Explain.
H ₀	:
H_1	

Assumptions:

Test statistic:

Critical value:

Decision:

Conclusion:

Q2. (16 marks) A study was done in which the high daily temperature and the number of traffic accidents within the city were recorded. These sample data are shown as follows:

Temperature (X)	91	56	75	68	50	39	98
# of Accidents (Y)	7	4	9	11	3	5	8

Given the following

$\sum x = 477,$	$\sum y = 47,$	$\sum x^2 = 35291,$	$\sum y^2$	= 365,	$\sum xy = 34$	13
$\sum (x - \overline{x})^2 = 2$	2786.86, \sum	$\left(y-\overline{y}\right)^2 = 49.4286$	5 and	$\sum (x-x)$	$\bar{x}(y-\bar{y})=21$	0.286

a. Find the equation for <u>predicting</u> the number of accidents using the temperature:

b. Construct a 95% confidence interval for the slope of the regression line.

STAT 212 Business Statistics II	4
c. Is there a significant linear relationship between the two variables? Explain.	
H ₀ :	
H ₁ :	
Assumptions:	
Decision Rule:	
Decision:	
Conclusion:	

Q4. (23 marks) The following Minitab output is the result of a multiple regression analysis in which we are interested in explaining the variation in retail price (**Y**) of personal computers based on four independent variables, monitor included (1=Yes, 0=No) (**X1**), CPU *Speed* in Mhz (**X2**), *RAM* in MB's (**X3**), and *Hard drive* capacity in GB's (**X4**).

Regression Analysis: Y versus X1; X2; X3; X4; X2X4

The regress	ion equation	is			
Y = 1404 +	49 X1 - 3.37	X2 + 4.72 X3	3 - 105 X4 +	0.644	X2X4
Predictor	Coef	SE Coef	Т	P	VIF
Constant	1404	1765	0.80	0.433	
X1	48.7	240.5	0.20	0.841	1.0
X2	-3.372	4.689	-0.72	0.478	8.3
Х3	4.721	3.005	1.57	0.127	2.2
X4	-104.9	304.6	-0.34	0.733	133.3
X2X4	0.6442	0.6967	0.92	0.363	176.2
S = 697.0	R-Sq =	70.5% R-S	Sq(adj) = 65	.5%	

Analysis	of Varia	ince						
Source Regressio Residual Total	n Error	DF 5 30 35	34753 14573 49325	SS 3583 3666 7250	1 69507 4857	MS 17 89	F 14.31	P 0.000
Source X1 X2 X3 X4 X2X4	DF 1 1 1 1	Sec 252 2123 5713 713 415	4 SS 2592 4267 3693 7818 5213					
Unusual Ob Obs 23 24	servatior X1 1.00 1.00	ns Y 1900 6360		Fit 3364 4511	SE F 4 4	it 41 40	Residual -1464 1849	St Resid -2.71F 3.42F
R denotes	an observ	vation w	ith a	large st	andardi	zed re	esidual	
Durbin-Wat	son stati	lstic =	2.07					
Predicted '	Values fo	or New O	bserva	tions				
New Obs 1	Fit 1170	SE Fit 259	(95.09 640;	5 CI 1700)	(95.0% -349;	PI 2689)
Values of	Predict	ors fo:	n New	Observa	ations			
	171		vo	7	73	٧٨	x25	zЛ

Best Subsets Regression: Y versus X1; X2; X2X4

Response is Y

Χ							
2							
Χ	ХХ	Х					
1	12	1	S	C-p	R-Sq(adj)	R-Sq	Vars
X			684.26	0.3	66.8	67.7	1
	Х		910.58	25.2	41.2	42.8	1
Χ	Х		691.92	2.0	66.0	68.0	2
Χ	X	Х	693.89	2.2	65.8	67.8	2
Х	ХХ	Х	702.25	4.0	65.0	68.0	3

Correlations: Y; X1; X2; X3; X4

X1	Y 0.072 0.678	X1	X2	ХЗ
X2	0.655 0.000	-0.020 0.910		
ХЗ	0.691 0.000	0.045 0.795	0.658 0.000	
X4	0.819	0.083 0.632	0.761 0.000	0.708 0.000

Cell	Contents:	Pearson	correlation
		P-Value	

Residual Model Diagnostics

Given this output and your knowledge of multiple regression, answer the following;

a. The slope of the <i>Speed</i> variable is	
b. Is the relationship between <i>RAM</i> and <i>Hard drive</i>	H _o : H _A :
significant? Why?	Decision:
c. Are the independent variables significant in explaining the variation in the <i>Price</i> ? Why?	H _o : H _A :
	Decision:
d. Do <i>Speed</i> and <i>Hard drive</i> interact on varying the value	H _o : H _A :
of the Price. They.	Decision:

e. Check the assumptions of the multiple regression	
f. What will be the <i>Price</i> of a computer <i>including</i> the monitor, has a <i>Speed</i> of 400 Mhz, a <i>RAM</i> of 64 MB's and	
a Hard drive capacity of 5 GB's?	
g. A 95% CI for the <i>Price</i> of a computers with the specs in	
(f) is	
h. The two variables that have no severe multicolinearity	
are	
i. A 99% CI for the slope of the <i>Hard drive capacity</i> of the	
computer is	
j. The percentage of variation in <i>Price</i> explained by the	
indep. variables is	
k. The estimated variance of the regression model is	
1. Using the best subset regression option, what is the best	
group of indep. variables that explain the variation in the	
<i>Price</i> ? And has a C-p value of	

With My Best Wishes

7

Т