Final Version

King Fahd University of Petroleum & Minerals Department of Mathematics & Statistics Math 302 Major Exam II The Third Semester of 2013-2014 (133)

Time Allowed: 90 Minutes

Nama	ID //.
Name:	ID#:
Section/Instructor:	Serial #:

- Mobiles and calculators are not allowed in this exam.
- Write neatly and eligibly. You may lose points for messy work.
- Show all your work. No points for answers without justification.

Question $\#$	Marks	Maximum Marks
1		20
2		20
3		10
4		16
5		16
6		18
Total		100

Q:1 (20 points) Let *D* be the region bounded by the hemisphere $x^2 + y^2 + (z - 1)^2 = 9$, $1 \le z \le 4$. Verify the divergence theorem if $\mathbf{F} = \langle x, y, z - 1 \rangle$.

Q:2 (20 points) (a) Find the basis and dimension of subspace $S = \{ \langle x, y, z, w \rangle \mid x + y + z = w \text{ and } x, y, z, w \in R \}$ of R^4 .

(b) Let S = { $(x, y) \in \mathbb{R}^2 | x = 2y + 1$ }. Determine whether S is a subspace of \mathbb{R}^2 .

Q:3 (10 points) Let A be a non-zero 4×6 matrix .

(a) What is the maximum rank that A can have?

(b) If rank(A|B) = 2, then for what value(s) of rank A is the system AX = B, $B \neq 0$ inconsistent? consistent?

(C) If rank (A) = 3, then how many parameters does the solution of the system AX = 0 have?

Q:4 (16 points) Use Gauss-Jordan elimination to find inverse of $A = \begin{pmatrix} 2 & 0 & 1 \\ -2 & 3 & 4 \\ -5 & 5 & 6 \end{pmatrix}$

Q:5 (16 points) Let
$$A = \begin{pmatrix} 1 & 2 & 1 \\ 6 & -1 & 0 \\ -1 & -2 & -1 \end{pmatrix}$$

(a) Verify that eigenvalues of A are $\lambda_1 = 0, \lambda_2 = -4$ and $\lambda_3 = 3$.

(b)Find an eigenvector corresponding to λ_2 .

Q:6 (18 points) Let $A = \begin{pmatrix} 9 & 1 & 1 \\ 1 & 9 & 1 \\ 1 & 1 & 9 \end{pmatrix}$ (a) Explain briefly why A is diagonalizable.

(b) If eigenvalues and corresponding eigenvectors of A are

$$\lambda_1 = 11, \ \lambda_2 = \lambda_3 = 8, \ K_1 = \begin{pmatrix} 1\\ 1\\ 1 \end{pmatrix}, \ K_2 = \begin{pmatrix} -2\\ 1\\ 1 \end{pmatrix}, \ K_3 = \begin{pmatrix} 0\\ 1\\ -1 \end{pmatrix},$$

then find an orthogonal matrix P that diagonalizes A, and find the matrix $P^{-1}AP$.