King Fahd University of Petroleum & Minerals Department of Mathematics & Statistics Math 302 Major Exam I The Third Semester of 2013-2014 (133)

Time Allowed: 120 Minutes

Name:	ID#:
Section/Instructor:	Serial #:

- Mobiles and calculators are not allowed in this exam.
- Write all steps clear.

Question $\#$	Marks	Maximum Marks
1		8
2		6
3		14
4		16
5		12
6		14
7		16
8		14
Total		100

Q:2 (6 points) Find the maximum rate of change of $f(x, y) = \frac{y^2}{x}$ at the point (2, 4).

Q:3 (14 points) Find the points on the hyperboloid $x^2 - y^2 + 2z^2 = 1$ where the normal line is parallel to the line that joins the points (3, -1, 0) and (5, 3, 6).

Q:4 (16 points) Determine if the vector field

$$\mathbf{F}(x,y) = \langle 2x - y \sin(xy) - 5y^4, -20 xy^3 - x \sin(xy) \rangle$$

is conservative field. If so, find a potential function $\phi(x, y)$ for **F** and evaluate the integral $\int_C \mathbf{F} d\mathbf{r}$, where C is any path from (-2, 0) to (1, 0).

$$\oint_C (3y - e^{\sin x})dx + (7x + \sqrt{y^2 - 1})dy$$

where C is the circle $x^2 + y^2 = 9$ oriented positively.

Q:5(b) (4 points) If $\phi = 2x^3y^2z^4$, find $div(grad \phi)$.

Q:6 (14 points) Evaluate the surface integral $\int \int_S yz \, dS$, where S that portion of the cone $z = \sqrt{x^2 + y^2}$ lies between the plane $z = \frac{1}{2}$ and z = 1.

Q:7 (16 points) Verify Green Theorem when the vector field is $\mathbf{F} = \langle x, y \rangle$, and the curve C consists of the line segment from (0,1) to (0,0) and from (0,0) to (1,0) and the parabola $y = 1 - x^2$ from (1,0) to (0,1).

Q:8 (14 points) Use Stokes' Theorem to compute $\int \int_S curl \mathbf{F} \cdot \mathbf{n} \, dS$, where $\mathbf{F}(x, y, z) = \langle xz, yz, xy \rangle$ and S is the part of the sphere $x^2 + y^2 + z^2 = 4$ that lies inside the cylinder $x^2 + y^2 = 1$ and above the xy- plane.