KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

Department of Mathematics and Statistics MATH 260-(133) Major Exam 2 Code 001

Time: 120 Minutes Maximum Points: 100

Name: I.D. # Section: Ser.#

Show All Necessary Work

Calculators are not allowed in this exam

PART-I (MCQ) Each MCQ = 6 points]
Encircle your choice (answer of each MCQ) in the following Table

QCQ#	Answer				
1	A	В	C	D	${f E}$
2	A	В	C	D	E
3	A	В	C	D	E
4	A	В	C	D	E
5	A	В	C	D	E

PART-II (Written)

Q	Points
1	/12
2	/10
3	/12
4	/12
5	/12
6	/12
Total	/70

PART I, MCQ: Encircle your answer in the Table on the Cover Page.

Q1. Let $A = (a_{ij}), a_{ij} = i + j$ and $B = (b_{jk}), b_{jk} = j - k$ be 8×8 matrices. If $C = AB = (c_{ik})$, then the

coefficient c_{33} is equal to: (Hint $\sum_{j=1}^{j=n} j^2 = \frac{n(n+1)(2n+1)}{6}$)

- A) 132.
- B) 195.
- C) 204.
- D) -132.
- E) -195.

- **Q2.** For which value(s) of k, the vectors $v_1 = (1,1,k,1)$, $v_2 = (1,k,1,0)$, $v_3 = (1,1,k,0)$ and $v_4 = (1,0,0,0)$ form a basis for the vector space \mathbb{R}^4 .
- A) all real numbers.
- B) all real numbers except 1.
- C) all real numbers except 1 and -1
- D) all real numbers except -1
- E) all real numbers except 0.

- **Q3.** For which value(s) of k, the set $W = \{(x, y, z) \mid x + y + z = k^2 4\}$ is a subspace of \mathbb{R}^3 .
- A) all real numbers.
- B) k = 2.
- C) k = -2
- *D*) $k = \pm 2$
- E) all real numbers except -2 and 2.

Q4. If $y_1 = x$ and $y_2 = x \ln x$ are solutions of the differential equation $x^2 y'' - xy' + y = 0$, then the initial value problem $x^2 y'' - xy' + y = 0$, y'(e) = 4, y(e) = e has a solution of the form:

- $A) \qquad y = 2x + 3x \ln x$
- $B) \qquad y = -2x + 3x \ln x$
- $C) y = 2x 3x \ln x$
- $D) y = -2x 3x \ln x$
- $E) y = x + 3x \ln x$

Q5. If A and B are two 3×3 matrices with det A = 2 and det B = 4, then $\det(2AB) + \det(A^{-1}B^{T})$ is:

- *A*) 64
- **B**) 18
- *C*) 72
- *D*) $\frac{513}{8}$
- *E*) 66

Part II. Provide complete solution of each question showing all necessary steps.

Q 1. a/ Use the method of cofactors to find the inverse A^{-1} of the matrix $A = \begin{pmatrix} 1 & 2 & 1 \\ 0 & -1 & 2 \\ 1 & 1 & 2 \end{pmatrix}$

b/ Find a matrix X such that $AX = \begin{pmatrix} 2 & 3 & 1 \\ 1 & 4 & -1 \\ 5 & 0 & -2 \end{pmatrix}$

Q 2. Use Cramer rule to solve the system (S): $\begin{cases} 2x + 3y - 3z = 1 \\ x + 2y + 2z = 0 \\ x - y + z = 0 \end{cases}$

 ${\bf Q}$ 3. a/ Solve the differential equation: $y^{\prime\prime\prime}-5\,y^{\prime\prime}+8\,y^{\prime}-4\,y=0$.

b/ Find a homogeneous differential equation with constant coefficients whose solution is $y(x) = c_0 e^x + c_1 x e^x + c_2 e^{2x}$.

Q 4. Use the method of undetermined coefficient to solve the differential equation: $y''-4y'-5y = xe^x + \sin x$ [Do not Evaluate the Constants for the particular solution]

Q 5. a/ Find a basis and the dimension of the solution space of the system

$$\begin{cases} x + y + z + t = 0 \\ 2x + y - z = 0 \\ x + 2y + 4z + 3t = 0 \\ x - y - 5z - 3t = 0 \end{cases}$$

b/ Find a basis and the dimension of the subspace $W = \{(x, y, z) \mid x - y + z = 0\}$

06	Let $u =$	(1,0,1), v =	(2, a, 3)) and	w = 0	(14))
QU.	Let $u -$	(1,0,1), v -	(2, a, s)	<i>)</i> and	<i>vv</i> — ($(1,T,\iota$,, .

a/ Under which conditions on a and b, w = (1,4,b) is a linear combination of u and v.

b/Without any matrix row-operations, if a=2 and b=3, is w=(1,4,b) a linear combination of u and v

c/ If $W = span\{u, v, w\}$. Under which conditions on a and b , $W = R^3$?

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

Department of Mathematics and Statistics MATH 260-(133) Major Exam 2 Code 002

Time: 120 Minutes Maximum Points: 100

Name: I.D. # Section: Ser.#

Show All Necessary Work

Calculators are not allowed in this exam

PART-I (MCQ) Each MCQ = 6 points]
Encircle your choice (answer of each MCQ) in the following Table

QCQ#	Answer				
1	A	В	C	D	E
2	A	В	C	D	E
3	A	В	C	D	E
4	A	В	C	D	E
5	A	В	C	D	E

PART-II (Written)

Q	Points
1	/12
2	/10
3	/12
4	/12
5	/12
6	/12
Total	/70

PART I, MCQ: Encircle your answer in the Table on the Cover Page.

Q1. If A and B are two 3×3 matrices with det A = 2 and det B = 4, then $det(2AB) + det(A^{-1}B^{T})$ is:

- *A*) 64
- **B**) 18
- *C*) 72
- *D*) $\frac{513}{8}$
- *E*) 66

Q2. If $y_1 = x$ and $y_2 = x \ln x$ are solutions of the differential equation $x^2 y'' - xy' + y = 0$, then the initial value problem $x^2 y'' - xy' + y = 0$, y'(e) = 4, y(e) = e has a solution of the form:

- $A) \qquad y = 2x + 3x \ln x$
- $B) \qquad y = -2x + 3x \ln x$
- $C) y = 2x 3x \ln x$
- $D) \qquad y = -2x 3x \ln x$
- $E) y = x + 3x \ln x$

Q3. For which value(s) of k, the set $W = \{(x, y, z) \mid x + y + z = k^2 - 4\}$ is a subspace of \mathbb{R}^3 .

- A) all real numbers.
- B) k=2.
- *C*) k = -2
- $D) \ k = \pm 2$
- *E*) all real numbers except -2 and 2.

Q4. For which value(s) of k, the vectors $v_1 = (1,1,k,1), v_2 = (1,k,1,0), v_3 = (1,1,k,0)$ and $v_4 = (1,0,0,0)$ form a basis for the vector space R^4 .

- A) all real numbers.
- B) all real numbers except 1.
- C) all real numbers except 1 and -1
- D) all real numbers except -1
- E) all real numbers except 0.

Q5. Let $A = (a_{ij}), a_{ij} = i + j$ and $B = (b_{jk}), b_{jk} = j - k$ be 8×8 matrices. If $C = AB = (c_{ik})$, then the coefficient c_{33} is equal to: (Hint $\sum_{j=1}^{j=n} j^2 = \frac{n(n+1)(2n+1)}{6}$)

- *A*) 132.
- *B*) 195.
- C) 204.
- D) -132.
- E) -195.