KING FAHD UNIVERSITY OF PETROLEUM & MINERALS DEPARTMENT OF MATHEMATICS & STATISTICS DHAHRAN, SAUDI ARABIA

STAT416 : Stochastic Processes for Actuaries (132)

Instructor: Mohammad Farah SalehOffice: 5-312Phone: 860-4410E-mail: mohfarah@kfupm.edu.saOffice Hours: UTR 9.00am-9.50am and 12:10 pm – 10:00 pm or by appointment

Textbook:

1. Introduction to Probability Models, 10th edition, by Sheldon M. Ross (2012)

Course Objectives:

Basic classes of stochastic processes. Poisson (regular, compound, compound surplus, and non-homogenous) and renewal processes with applications in simple queuing systems and Actuarial Science. Discrete and continuous time Markov chains. Birth-Death and Yule processes. Branching models of population growth processes. Actuarial risk models; simulation.Arithmetic and geometric Brownian motions, and applications of these processes such as in computation of resident fees for continuing care retirement communities, and pricing of financial instruments.

<u>Assessment</u>

Assessment for this course will be based on attendance, homework, two major exams and a comprehensive final exam, as in the following:

Activity	Weight
Quiz, Homework and attendance	(12% + 6% + 2%)
Exam 1 (Chapters 1, 2, 3, 4 and 5)	20%
March10, 2014,7pm	20%
Exam 2 (Chapters 6,7 & 8)	
April23, 2014, 7pm	20%
Final Exam (Comprehensive) 40%	
Monday May 19 7pm (as posted on registrar website)	40%

*You need to achieve at least 50% in order to pass the course

Academic Integrity: All KFUPM policies regarding ethics and academic honesty apply to this course.

Important Notes:

- \checkmark Excessive unexcused absences will result in a grade of <u>*DN*</u> in accordance with University rules.
- ✓ <u>Attendance</u> on time is *very* important.
- \checkmark <u>A formula sheet</u> and <u>statistical tables</u> will be provided for you in every exam.

Home Work:

- > Handout problems will be posted on the WebCT or in the instructor home page towards the end of each chapter.
- > The <u>Homework</u> should be submitted in the first Saturday after completing the chapter and no need for an announcement in advance.
- > No late homework will be accepted.

Syllabus(Tentative)

Week	Sections	Topics	Notes	
Week 1 Jan 26-30	$\begin{array}{c} 1.1 1.6 \\ 2.1 - 2.9 \\ 3.1 - 3.5 \end{array}$	Introduction to Probability theory (review) Random variables (review) Conditional Probability and Conditional Expectation (review)		
Week 2 Feb 2 – 6	4.1 – 4.3	Introduction, Chapman – Kolmogorov Equation Classification of States		
Week 3 Feb 9 – 13	4.4-4.8	Limiting Probabilities, Some applications, Mean time Spent in Transient States, Branching Processes, Time Reversible Markov Chains,		
Week 4 Feb 16 – 20	5.1 - 5.3	Introduction, The Exponential distribution and The Poisson Processes		
Week 5 Feb 23 – 27	5.3-5.4	The Poisson Processes (cont) and Generalization of the Poisson Process		
Week 6 Mar 2 – 6	6.1 – 6.4	Introduction Continuous-Time Markov Chains, Birth and Death Processes and The Transition Probability Function $P_{ij}(t)$		
Week 7 Mar 9 – 13	6.5-6.8	Limiting Probabilities, Time Reversibility, Uniformization and Computing the Transition Probabilities		
<u>March10 - 1-st Major Exam</u> (chapters 1, 2, 3, 4&5)				
Week 8 Mar 16 – 20	7.1-7.5	Introduction, Distribution of $N(t)$, Limit Theorems and their Applications, renewal Reward Processes and Regenerative Processes		
Midterm Vacation March 23-27, 2013				
Week 9 Mar 30 – Apr 3	7.6-7.10	Semi – Markov Processes, the Inspection Paradox, Computing the Renewal Function, Applications to Patterns and The Insurance Ruin Problem		
Week 10 Apr 6 – 10	8.1-8.7	Introduction, Preliminaries, Exponential Models, Network of Queues, The System M/G/1, Variation on the M/G/1 and the Model G/M/1		
Week 11 Apr 13 – 17	9.1 – 9.3	Introduction, Structure Functions, Reliability of Systems of Independent Components and Bounds of the Reliability Function		
Week 12 Apr 20 – 24	9.5-9.7	System Life as Function of Component Lives, Expected System Lifetime and System with Repair		
April 23 <u>- 2-nd Major Exam</u> (chapters 6, 7&8)				
Week 13 Apr 27 – May 1	10.1- 10.4	Brownian Motion, Hitting Times, Variations on Brownian Motion and Pricing stock Options		
Week 14 May 4 – 8	4.9, 11.1- 11.8	Markov-Chain Monte Carlo, Simulation (emphasis on 11.5 onwards)		
Week 15 May 11 – 15	Review	Simulation (cont.) Review		
	Comprehensive Final Exam			

Learning objectives and outcomes:

On completion of the course the students will be able to:

Explain the concepts of probability.

- Explain what is meant by a set function, a sample space for an experiment, and an event.
- Define probability as a set function on a collection of events, stating basic axioms.
- Derive basic properties satisfied by the probability of occurrence of an event, and calculate probabilities of events in simple situations.
- Derive the addition rule for the probability of the union of two events, and use the rule to calculate probabilities.
- Define the conditional probability of one event given the occurrence of another event, and calculate such probabilities.
- Derive Bayes' Theorem for events, and use the result to calculate probabilities.

Understand the concepts of random variables.

- Define stochastic process.
- Use limit theorems

Understand the concepts of conditioning and compounding.

- Define compound random variables.
- Compute expectations by conditioning
- Use variance formula by conditioning

Describe the properties of Poisson processes:

- For increments in the homogeneous case
- For interval times in the homogeneous case
- Resulting from special types of events in the Poisson process
- Resulting from sums of independent Poisson processes.
- For any Poisson process and the interarrival and waiting distributions associated with the Poisson process.
- Calculate: a) Expected values b) Variances c) Probabilities. For a compound Poisson process, calculate moments associated with the value of the process at a given time.
- Discuss the properties of the nonhomogeneous Poisson process.
- Discuss the properties of the **Compound Poisson** process.
- Describe the properties of the exponential distribution

Describe the properties of discrete and continuous Markov chains:

- For homogenous discrete-time Markov chain models: Define each model. Calculate probabilities of being in a particular state at a particular time.
- Calculate probabilities of transitioning between states.
- Explain what is meant by the Markov property in the context of a stochastic process.
- Define and apply a Markov chain.
- State the essential features of a Markov chain model.
- Applications of the Gambler's ruin problem.
- State the features of the Continuous-time Markov chains.
- Discuss the features of the Birth and death processes.
- Demonstrate how Markov chains can be used as a tool for modelling and how they can be simulated.
- Describe a system of frequency based experience rating in terms of a Markov chain and describe other simple applications.
- Describe a time-inhomogeneous Markov chain model and describe simple applications.

Describe the properties of a Branching Process.

Demonstrate the knowledge and understanding of Queuing theory.

- Discuss the steady state probabilities
- Discuss the applications of the Birth and Death Queuing Models.

Demonstrate understanding of stochastic models of the behavior of stock prices.

• Discuss the continuous time log-normal model of security prices and the empirical evidence for or against the model.

Define and apply the main concepts of stochastic process Brownian motion (or Wiener Processes).

- Explain the definition and basic properties of standard Brownian motion or Wiener process.
- Write down the stochastic differential equation for geometric Brownian motion and show how to find its solution.
- Show an understanding of simple stochastic models for investment returns.
- Discuss the applications of pricing stock options.
- State the Arbitrage theorem.
- Discuss the applications of **geometric Brownian** motion.

Describe the general techniques for simulating continuous random variables.

- Describe the generation of random variates from specified distribution.
- Discuss the inverse transformation method.
- Discuss the applications of acceptance and rejection methods.
- Disadvantages of using truly random numbers.
- Common sets of random numbers versus independent sets of random numbers.