KING FAHD UNIVERSITY OF PETROLEUM & MINERALS DEPARTMENT OF MATHEMATICS AND STATISTICS Term 132

STAT 416 Stochastic Processes for Actuaries

First Exam

Monday March 10, 2014

Name: _____ ID #:

Important Note:

• Show all your work including formulas, intermediate steps and final answer

Full Marks	Marks Obtained
10	
6	
7	
5	
8	
10	
45	
	10 6 7 5 8 10

Q1: Specify the states of the following Markov chains, and determine whether they are transient or recurrent (hint: draw the transient diagram) (10 points)

1.
$$P = \begin{bmatrix} 0 & 0.5 & 0.5 \\ 0.5 & 0 & 0.5 \\ 0.5 & 0.5 & 0 \end{bmatrix}$$

2.
$$P = \begin{bmatrix} 0.5 & 0 & 0.5 & 0 & 0 \\ 0.25 & 0.5 & 0.25 & 0 & 0 \\ 0.5 & 0 & 0.5 & 0 & 0 \\ 0 & 0 & 0 & 0.5 & 0.5 \\ 0 & 0 & 0 & 0.5 & 0.5 \end{bmatrix}$$

Q2: A Markov chain with three states
$$P = \begin{bmatrix} \frac{1}{2} & \frac{1}{3} & \frac{1}{6} \\ 0 & \frac{1}{3} & \frac{2}{3} \\ \frac{1}{2} & 0 & \frac{1}{2} \end{bmatrix}$$

If $P(X_0 = 0) = P(X_0 = 1) = \frac{1}{3}$ and $P^2 = \frac{1}{18} \begin{bmatrix} 6 & 5 & 7 \\ 6 & 2 & 10 \\ 9 & 3 & 6 \end{bmatrix}$, find $E(X_2)$ (5 points)

Q3: Suppose that students arrive to building 6 at a Poisson rate 1.5 per minutes

1. What is the probability that the elapsed time between the 100th arrival and the next arrival exceeds 2 minutes? (2 points)

2. What is the expected time until the 100th student arrives? (2 points)

3. What is the probability that the 100th arrival will arrive after 75 minutes? You may approximate this probability with a Normal distribution. (3 points)

Q4: Assume that customers in a department store arrive at a Poisson rate that increases linearly for 6 per hour at 1 PM to 9 per hour at 2 PM. Calculate the probability that exactly 2 customers arrive between 1 PM and 2 PM. (5 points)

Q6: An insurance company has two types of policy: policy A and policy B. the total claims from the company arrive according to a Poisson process at rate 9 per day. A randomly selected claim has $\frac{1}{3}$ chance that it is of policy A.

1. Calculate the probability that claims from polity B will be fewer than 3 on a given day (5 points)

2. A randomly selected claim from policy A has a $\frac{2}{3}$ probability of being over \$10000 while a randomly selected claim from policy B has a probability $\frac{2}{9}$ of being over \$10000. Determine the expected number of claims over \$10000 on a given day. (3 points)

Q6: An insurance company charges customers annual premiums based on their accident history in the following fashion:

- No accident in last 2 years: \$250 annual premium
- Accidents in each of last 2 years: \$800 annual premium
- Accident in only 1 of last 2 years: \$400 annual premium

If a customer had an accident last year then they have a 10% chance of having one this year; If they had no accident last year then they have a 3% chance of having one this year.

1.	Find the transition probability matrix for this process	(3 points)
2.	Find the limiting probabilities	(5 points)
3.	Find the long – run average annual premium paid by the customers.	(2 points)