1) Let X and Y have the joint pdf

$$f(x,y) = \begin{cases} 2 & for \ 0 < x < y < 1 \\ 0 & otherwise \end{cases}$$

- a) Find the marginal density of *X*.
- b) Find the marginal density of *Y*.
- c) Find the conditional density of *X* given Y = y
- d) Find the expected value of *X* given Y = y
- e) Find the variance of *X* given Y = y
- f) Find $P\left(X < \frac{1}{2}\right)$
- g) Find $P\left(X < \frac{1}{2} \middle| Y = \frac{3}{4}\right)$
- h) Find the correlation coefficient ρ of *X* and *Y*.
- i) Find the joint moment generating function of X and Y, and use it to find the moment generating function of X.
- 2) Suppose that the random variables X_i are independent Poisson random variables with means λ_i , i=1, 2, 3, respectively. Let $Y = X_1 + X_2$ and $W = X_2 + X_3$. Find the joint probability mass function P(Y = i, W = j)
- 3) If X = ln Y has a normal distribution with mean μ and variance σ^2 , Y is said to have a lognormal distribution. Find the pdf of Y.
- 4) A fair die is rolled until all 6 sides have appeared at least once.
 - a) Find the expected number of rolls until all 6 sides appear.
 - b) Use this result to find the expected number of times that outcome 1 appears.
- 5) The number of automobiles sold weekly is a random variable with expected value 16. Give an upper bound to the probability that next week's sales exceed 18.
- 6) Suppose that the number of units produced daily at factory A is a random variable with mean 20 and standard deviation 3, and the number of units produced daily at factory B is a random variable with mean 18 and standard deviation 6. Assuming independence, find an upper bound for the probability that more units are produced at factory B than at factory A.
- 7) If X is a positive random variable with mean μ . Show that $P(X > 2\mu) \le \frac{1}{2}$
- 8) If X is a positive random variable, what is the relationship between E(1/X) and 1/E(X)
- 9) Walid will take two books with him on a trip. Suppose that the probability that he will like book 1 is 0.6, the probability that he will like book 2 is 0.5, and the probability that he will like both books is 0.4. What is the conditional probability that he will like book 2 given that he did not like book 1.
- 10) Six balls are to be randomly chosen from an urn containing 8 red, 10 green and 12 blue balls.
 - a) What is the probability at least one red ball is chosen?
 - b) Given that no red balls are chosen, what is the probability that there are exactly 2 green balls among the 6 chosen?