King Fahd University of Petroleum & Minerals Department of Math. & Stat.

Math 668 - Final Exam (132) Time: 2 hours 30 mms

May 25, 2014

======================================	ID #	
	Problem 1	/10
	Problem 2	/10
	Problem 3 Total	/10 /30

Problem # 1. (10 marks) Let Ω be a bounded and smooth domain of \mathbb{R}^n . Consider the problem

$$(\mathbf{P}_1) \qquad \begin{cases} u_t(x,t) - \left(\int_{\Omega} |\nabla u(x,t)|^2 dx\right) \Delta u(x,t) = f(x,t) & \text{in } \Omega \times (0,+\infty) \\ u(x,0) = u_0(x) & \text{in } \Omega \\ u = 0 & \text{on } \partial\Omega \times [0,+\infty) \end{cases}$$

where $u_0 \in H_0^1(\Omega)$ and $f \in L^2(\Omega \times (0, +\infty))$. Show that (P₁) has a unique weak solution $u \in L^2((0, +\infty); H_0^1(\Omega))$.

Problem # 2. (10 marks) In a bounded and smooth domain of \mathbb{R}^n , consider the problem

$$(\mathbf{P}_2) \qquad \begin{cases} u_{tt}(x,t) + \Delta^2 u(x,t) = 0 & \text{in } \Omega \times (0,+\infty) \\ u(x,0) = u_0(x), & u_t(x,0) = u_1(x) & \text{in } \Omega \\ \frac{\partial u}{\partial \nu} = u = 0 & \text{on } \partial\Omega \times [0,+\infty) \end{cases}$$

If $u_0 \in H^4(\Omega) \cap H^2_0(\Omega)$ and $u_1 \in H^2_0(\Omega)$, show that (P₂) has a unique solution

$$u \in C\left([0,+\infty), H^4(\Omega) \cap H^2_0(\Omega)\right) \cap C^1\left([0,+\infty), H^2_0(\Omega)\right) \cap C^2\left([0,+\infty), L^2(\Omega)\right)$$

Problem # 3. (10 marks) Given the nonlinear problem

(P₃)
$$\begin{cases} u_{tt}(x,t) - \Delta u(x,t) + h(u(x,t)) = 0 & \text{in } \Omega \times (0,+\infty) \\ u(x,0) = u_0(x), & u_t(x,0) = u_1(x) & \text{in } \Omega \\ u = 0 & \text{on } \partial\Omega \times [0,+\infty) \end{cases}$$

where Ω is a bounded and smooth domain of \mathbb{R}^n , $u_0 \in H_0^1(\Omega)$, $u_1 \in L^2(\Omega)$ and $h: \mathbb{R} \to \mathbb{R}$ is such that

$$|h(s)| \le \alpha |s|$$
 and $H(s) = \int_0^s h(\xi) d\xi \ge 0, \qquad \alpha > 0.$

a. Use Galerkin method to establish an existence result for (P_3)

b. If h is increasing, show that the solution is unique.