King Fahd University of Petroleum and Minerals

Department of Mathematics and Statistics

Final Exam for Math 572, Semester 132

Name: ID:

Problem 1 Consider the following two dimensional mixed problem:

$$\begin{cases} -\operatorname{div}(a\nabla u) + c \, u = f & \text{in } \Omega, \\ u = 0 & \text{on } \Gamma_1, \\ \partial_n \, u = g & \text{on } \Gamma_2, \end{cases}$$
(1)

where the functions a, c and f are sufficiently regular with $a(x) \ge a_0 > 0$ and $c(x) \ge 0$ for $x \in \Omega$.

a) Define the weak formulation of the mixed problem (1) on a suitable Sobolev space ${\bf H}$ (You need to define ${\bf H})$.

b) Show that the mixed problem (1) has a unique weak solution $u \in \mathbf{H}$.

d) Define the continuous piecewise bilinear finite element solution u_h of (1) over a uniform mesh consists of squares with side length equal to h.

1

e) Prove the existence and uniqueness of u_h .

f) Show that $||u - u_h||_{H^1} \le C h ||u||_{H^2}$.

Problem 2 Consider the following problem:

$$\begin{cases} u_t - u_{xx} = u \sin(u) & \text{on } \Omega \times (0, T] \\ u(0, t) = u(1, t) = 0 & \text{for } t \in (0, T) \\ u(x, 0) = v(x) & \text{for } x \in \Omega \end{cases}$$
(2)

where $\Omega = (0,1)$ and u = u(x,t). Assume that $u \in \mathcal{C}^1([0,T]; H^2(\Omega))$.

a) Show that $||u(t)|| \le C||v||$ for any $t \in (0,T]$.

b) Discretize problem (2) in time by using (first order) backward Euler scheme over a uniform mesh consists of N subintervals and each is of length k.

c) Say that $U^n \approx u(t_n)$ is the backward Euler solution, for $n = 1, \dots, N$, and assume that the time-step size k is sufficiently small. Prove the following stability property:

$$||U^n|| \le C||v|| \quad \text{for} \quad n = 1, \cdots, N.$$

d) Show that $||U^n - u(t_n)|| \le C(u) k$ for $n = 1, 2, \cdots, N$.

Problem 3 Consider the following first order model:

 $u_t = a u_x$ in $\mathbb{R} \times \mathbb{R}_+$ with u(x, 0) = v(x) for $x \in \mathbb{R}$, (3)

where a is a positive constant and v is a smooth function.

Define the grid points:

$$x_m = mh$$
 for $m \in \mathbb{Z}$ and $t_n = nk$ for $n \in \mathbb{N}$,

where h and k are the mesh step sizes in space and time, respectively. Introduce the grid functions

$$U_m^n \approx u(x_m, t_n)$$
 and $U_m^0 = v_m = v(x_m)$.

where U_m^n is defined through the finite difference (FD) scheme:

$$\frac{U_m^{n+1} - U_m^n}{k} = a \frac{U_{m+1}^n - U_m^n}{h} \quad \text{for} \quad m \in \mathbb{Z} \text{ and } n \in \mathbb{N}$$
$$U_m^0 = v_m \quad \text{for} \quad m \in \mathbb{Z}$$

a) Set $\lambda = \frac{k}{h}$. Show that

$$U_m^n = a\lambda U_{m+1}^n + (1 - a\lambda)U_m^n$$

Assume that $a\lambda \leq 1$. Then, for $n = 0, 1, 2, 3, \cdots$, prove that

b)

$$\max_{m\in\mathbb{Z}}|U_m^n|\leq C\|v\|_{\mathcal{C}}$$

c)

$$\max_{m \in \mathbb{Z}} |U_m^n - u(x_m, t_n)| \le C t_n h \, \|v\|_{\mathcal{C}^2}$$