KFUPM, DEPARTMENT OF MATHEMATICS AND STATISTICS

MATH 521: MIDTERM EXAM, TERM (132), APRIL 26, 2014

Time: 09:00(am) to 11:00

Name	:			
------	---	--	--	--

ID : Section :

Exercise 1. Let A, B be subsets of a metric space (X, d) such that $\overline{A} \cap B = A \cap \overline{B} = \emptyset$. Show that there exist two disjoint open sets U, V containing respectively A and B.

Exercise 2. Let X, Y be topological spaces and $A \subseteq X, B \subseteq Y$. Show that $\operatorname{Fr}(A \times B) = (\operatorname{Fr}(A) \times \overline{B}) \cup (\overline{A} \times \operatorname{Fr}(B)).$

Exercise 3. Let X, Y be topological spaces and $f : X \longrightarrow Y$ be a function and $G = \{(x, y) \in X \times Y : y = f(x)\}$ be the graph of f. Show that f is continuous if and only if the function $g : G \longrightarrow X$ induced by first projection is a homeomorphism.

Exercise 4. Find a closed set C of $\mathbb{R} \times \mathbb{R}$ such that the first projection $p_1(C)$ is not closed in \mathbb{R} .

Exercise 5.

(a) Give an example of subsets of \mathbb{R} such that

 $int(A) \cup int(B) \subset int(A \cup B).$

(b) Let A, B be subsets of a space X such that $A \cap \overline{B} = \overline{A} \cap B = \emptyset$. Show that $int(A) \cup int(B) = int(A \cup B).$ **Exercise 6.** Let X be a topological space and Y be a subset of X.

- (a) Show that $\overline{X \setminus Y} = X \setminus int(Y)$.
- (b) Let A be a subset of X. Show that A is open if and only if

$$A \cap \overline{B} = \overline{A \cap B},$$

for each subset B of X.

Exercise 7. Consider the quotient space \mathbb{R}/\mathbb{Q} , where the equivalence relation on \mathbb{R} is defined by

 $x \equiv y$ if and only if $x - y \in \mathbb{Q}$.

Show that the space \mathbb{R}/\mathbb{Q} is indiscrete.

Exercise 8. Let $f: X \longrightarrow Y$ be a surjective continuous map. Show that if f is an open(resp., closed) map, then it is a quotient map.

Exercise 9. Let \equiv be the equivalence relation defined on \mathbb{R} by:

 $x \equiv y$ if and only if $x - y \in \mathbb{Z}$.

We denote by T^1 the quotient space \mathbb{R}/\equiv .

Give an explicit continuous bijection from T^1 into the unit circle S^1 .