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Exercise 1. Let A,B be subsets of a metric space (X, d) such that A∩B = A∩B =

∅. Show that there exist two disjoint open sets U, V containing respectively A and

B.
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Exercise 2. Let X,Y be topological spaces and A ⊆ X,B ⊆ Y . Show that

Fr(A×B) = (Fr(A)×B) ∪ (A× Fr(B)).
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Exercise 3. Let X, Y be topological spaces and f : X −→ Y be a function and

G = {(x, y) ∈ X×Y : y = f(x)} be the graph of f . Show that f is continuous if and

only if the function g : G −→ X induced by first projection is a homeomorphism.
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Exercise 4. Find a closed set C of R×R such that the first projection p1(C) is not

closed in R.
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Exercise 5.

(a) Give an example of subsets of R such that

int(A) ∪ int(B) ⊂ int(A ∪B).

(b) Let A,B be subsets of a space X such that A ∩B = A ∩B = ∅. Show that

int(A) ∪ int(B) = int(A ∪B).
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Exercise 6. Let X be a topological space and Y be a subset of X.

(a) Show that X \ Y = X \ int(Y ).

(b) Let A be a subset of X. Show that A is open if and only if

A ∩B = A ∩B,

for each subset B of X.
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Exercise 7. Consider the quotient space R/Q, where the equivalence relation on R
is defined by

x ≡ y if and only if x− y ∈ Q.

Show that the space R/Q is indiscrete.
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Exercise 8. Let f : X −→ Y be a surjective continuous map. Show that if f is an

open(resp., closed) map, then it is a quotient map.
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Exercise 9. Let ≡ be the equivalence relation defined on R by:

x ≡ y if and only if x− y ∈ Z.

We denote by T 1 the quotient space R/ ≡.

Give an explicit continuous bijection from T 1 into the unit circle S1.


