King Fahd University of Petroleum & Minerals Department of Mathematics & Statistics Math 513 Major Exam 1 The Second Semester of 2013-2014 (132)

Time Allowed: 120 Minutes

ID#:	
#: Serial #:	
;	

- Mobiles and calculators are not allowed in this exam.
- Write all steps clear.

Question $\#$	Marks	Maximum Marks
1		12
2		12
3		12
4		12
5		12
6		14
7		10
8		16
Total		100

Q:1 (12 points) Find the Fourier series of $f(x) = x \cos\left(\frac{\pi x}{L}\right)$ for -L < x < L. Write the series in phase angle form.

Q:2 (12 points) Find the complex Fourier series of f(x) = |x| for $-\pi \le x \le \pi$.

Q:3 (12 points) Show that Fourier transform of $f(x) = \begin{cases} \cos(ax) & |x| < 1\\ 0 & |x| > 1 \end{cases}$, is $F(w) = \frac{\sin(w-a)}{1 + \sin(w+a)}$

is
$$F(w) = \frac{\sin(w-a)}{w-a} + \frac{\sin(w+a)}{w+a}$$
.

Q:4 (12 points) Let f(t) = H(t) - H(t-2) and $g(t) = e^t H(-t)$.

Show that
$$f(t) * g(t) = \begin{cases} e^t - e^{t-2} & t \le 0\\ 1 - e^{t-2} & 0 \le t \le 2\\ 0 & 2 \le t \end{cases}$$
.

Q:5 (12 points) Solve the initial value problem by using Laplace transform,

 $y'' + 3y' + 2y = t + [ae^{-(t-a)} - t]H(t-a), y(0) = y'(0) = 0.$

Q:6 (7+7 points) (a) Use convolution to find inverse laplace transform of $F(s) = \frac{1}{(s^2+4)^2}$. (b) Verify the convolution theorem for $t * [H(t) - H(t-2)] = \frac{t^2}{2} - \frac{(t-2)^2}{2}H(t-2)$

by showing that Laplace transforms of two sides are same.

.

Q:7 (10 points) Solve the integral equation $f(t) = 3t^2 - e^{-t} - \int_0^t f(\tau)e^{t-\tau}d\tau$ for f(t).

 ${\bf Q:8}~(8{+}8~{\rm points})$ (a) Find eigenvalues and eigenfunctions of

$$y'' + \lambda y = 0, y'(0) = 0$$
 and $y'(\pi) = 0.$

(b) Show that these eigenfunctions are orthogonal. Also find eigenfunction expansion of

f(x) = x using these eigenfunctions.

.